## Chao Wang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/855686/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Surface Protection and Interface Regulation for Zn Anode via 1â€Hydroxy Ethylideneâ€1,1â€Diphosphonic<br>Acid Electrolyte Additive toward Highâ€Performance Aqueous Batteries. Small, 2022, 18, e2107398. | 10.0 | 22        |
| 2  | Effects of a Magnetic Field on the Intergranular Corrosion of Inconel 690 in NaCl Solution. Frontiers in Materials, 2022, 9, .                                                                            | 2.4  | 3         |
| 3  | A hierarchical structure of a Co <sub>0.85</sub> Se@NC/ZnSe@NC yolk-double-shell polyhedron for long-term lithium storage. Nanoscale, 2021, 13, 7244-7251.                                                | 5.6  | 4         |
| 4  | Ant-nest-like Cu <sub>2â^'x</sub> Se@C with biomimetic channels boosts the cycling performance for<br>lithium storage. Dalton Transactions, 2021, 50, 8330-8337.                                          | 3.3  | 4         |
| 5  | Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition.<br>Nano-Micro Letters, 2021, 13, 89.                                                                   | 27.0 | 130       |
| 6  | Digital Holography Study of the Inhibitory Effects of Polyaspartic Acid on the Anodic Dissolution of Inconel <sup>®</sup> 600. Electrochemistry, 2021, 89, 267-272.                                       | 1.4  | 1         |
| 7  | Understanding and Controlling the Nucleation and Growth of Zn Electrodeposits for Aqueous<br>Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 32930-32936.                               | 8.0  | 71        |
| 8  | Dynamic pitting processes of 316 stainless steel in NaClÂ+ÂNa2CO3 solution with digital holography.<br>Corrosion Communications, 2021, 4, 57-67.                                                          | 6.0  | 8         |
| 9  | Effects of Chloride Ions and Nitrate Ions on the Anodic Dissolution of Iron in Sulfuric Acid Solution.<br>Metals, 2020, 10, 1118.                                                                         | 2.3  | 5         |
| 10 | Effects of the magnetic field on the anodic dissolution of Niâ",H3PO4 + KSCN system. Corrosion Science,<br>2020, 169, 108614.                                                                             | 6.6  | 6         |
| 11 | Rational Design of Unique ZnO/ZnS@N-C Heterostructures for High-Performance Lithium-Ion<br>Batteries. Journal of Physical Chemistry Letters, 2020, 11, 905-912.                                           | 4.6  | 41        |
| 12 | Digital Holographic Study of pH Effects on Anodic Dissolution of Copper in Aqueous Chloride<br>Electrolytes. Metals, 2020, 10, 487.                                                                       | 2.3  | 1         |
| 13 | Edge electrodeposition effect of cobalt under an external magnetic field. Journal of<br>Electroanalytical Chemistry, 2020, 865, 114143.                                                                   | 3.8  | 9         |
| 14 | Uniform lithium deposition driven by vertical magnetic field for stable lithium anodes. Solid State<br>Ionics, 2019, 341, 115033.                                                                         | 2.7  | 19        |
| 15 | In Situ Monitoring of Pitting Corrosion on Stainless Steel with Digital Holographic Surface Imaging.<br>Journal of the Electrochemical Society, 2019, 166, C3039-C3047.                                   | 2.9  | 10        |
| 16 | Enhanced Sulfur Transformation by Multifunctional FeS <sub>2</sub> /FeS/S Composites for<br>Highâ€Volumetric Capacity Cathodes in Lithium–Sulfur Batteries. Advanced Science, 2019, 6, 1800815.           | 11.2 | 178       |
| 17 | Communication—Trace Montmorillonite Electrolyte Additive Producing Stable Lithium-Sulfur<br>Batteries. Journal of the Electrochemical Society, 2019, 166, A3886-A3888.                                    | 2.9  | 10        |
| 18 | Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage<br>Materials, 2019, 18, 222-228.                                                                  | 18.0 | 84        |

CHAO WANG

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | In Situâ€Derived Porous SiO 2 /Carbon Nanocomposite from Lichens for Lithiumâ€Ion Batteries. Energy<br>Technology, 2019, 7, 1800840.                                                                   | 3.8  | 4         |
| 20 | In Situ Synthesis and Unprecedented Electrochemical Performance of Double Carbon Coated<br>Cross-Linked Co <sub>3</sub> O <sub>4</sub> . ACS Applied Materials & Interfaces, 2018, 10,<br>42372-42379. | 8.0  | 22        |
| 21 | Communication—Direct Observation of the Shuttle Phenomenon in Lithium-Sulfur Batteries via the<br>Digital Holographic Method. Journal of the Electrochemical Society, 2018, 165, A2866-A2868.          | 2.9  | 7         |
| 22 | The inhibitive effects of AC-treated mixed self-assembled monolayers on copper corrosion. Corrosion Science, 2017, 120, 231-238.                                                                       | 6.6  | 20        |
| 23 | Online Digital Holographic Method for Interface Reaction Monitoring in Lithium-Ion Batteries.<br>Journal of Physical Chemistry C, 2017, 121, 24733-24739.                                              | 3.1  | 13        |
| 24 | Gravimetric and volumetric energy densities of lithium-sulfur batteries. Current Opinion in Electrochemistry, 2017, 6, 92-99.                                                                          | 4.8  | 100       |
| 25 | In Situ Construction of 3D Interconnected FeS@Fe <sub>3</sub> C@Graphitic Carbon Networks for<br>Highâ€Performance Sodiumâ€ion Batteries. Advanced Functional Materials, 2017, 27, 1703390.            | 14.9 | 219       |
| 26 | Oscillations of pH at the Feâ",H 2 SO 4 interface during anodic dissolution. Electrochemistry<br>Communications, 2017, 82, 103-106.                                                                    | 4.7  | 14        |
| 27 | Automatic monitoring refractive index variations of transient solution during electrochemical reactions. Measurement: Journal of the International Measurement Confederation, 2017, 98, 10-16.         | 5.0  | 4         |
| 28 | Investigation into the Anodic Dissolution Processes of Copper in Neutral and Acidic Sulfate Solutions with the In-line Digital Holography. Electrochemistry, 2016, 84, 378-382.                        | 1.4  | 9         |
| 29 | Effects of the magnetic field on the corrosion dissolution of the 304 SSâ",FeCl3 system. Electrochimica Acta, 2016, 222, 619-626.                                                                      | 5.2  | 35        |
| 30 | Monitoring the Diffusion Layer During Passive Film Breakdown on Alloy 800 with Digital Holography.<br>Acta Metallurgica Sinica (English Letters), 2015, 28, 1170-1174.                                 | 2.9  | 7         |
| 31 | Effects of tensile stresses on the oscillatory electrodissolution of X70 carbon steel in sulfuric acid solution. Corrosion Science, 2015, 94, 445-451.                                                 | 6.6  | 9         |
| 32 | Study of the inhibitive effect of mixed self-assembled monolayers on copper with SECM.<br>Electrochimica Acta, 2014, 115, 531-536.                                                                     | 5.2  | 33        |
| 33 | Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+ NaCl solution. Electrochimica Acta, 2014, 117, 113-119.                                      | 5.2  | 30        |
| 34 | Study of the protection performance of self-assembled monolayers on copper with the scanning electrochemical microscope. Corrosion Science, 2014, 80, 511-516.                                         | 6.6  | 26        |
| 35 | Sensing of the dynamic concentration field at the solid/liquid interface using a Mach–Zehnder<br>interferometer. Sensors and Actuators B: Chemical, 2013, 176, 509-513.                                | 7.8  | 8         |
| 36 | Dynamic observation of the diffusion layer in anodic processes of the Fe/H2SO4 system with digital holography. Electrochemistry Communications, 2013, 27, 116-119.                                     | 4.7  | 16        |

CHAO WANG

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Investigation of the effects of the magnetic field on the anodic dissolution of copper in NaCl solutions with holography. Corrosion Science, 2012, 58, 69-78.                              | 6.6 | 41        |
| 38 | Effects of elastic deformation on the anodic dissolution of X70 carbon steel in sulfuric acid solution. Electrochimica Acta, 2012, 78, 609-614.                                            | 5.2 | 7         |
| 39 | Study of the effects of hydrogen on the pitting processes of X70 carbon steel with SECM.<br>Electrochemistry Communications, 2010, 12, 1804-1807.                                          | 4.7 | 47        |
| 40 | Effect of magnetic field on electroplating Ni/nano-Al2O3 composite coating. Journal of Electroanalytical Chemistry, 2009, 630, 42-48.                                                      | 3.8 | 57        |
| 41 | Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography. Electrochemistry Communications, 2009, 11, 1373-1376.                              | 4.7 | 53        |
| 42 | Designed oscillations of the Fe/H2SO4 system with the flow injection in a partially-closed environment. Electrochemistry Communications, 2009, 11, 1888-1891.                              | 4.7 | 8         |
| 43 | Effects of an applied magnetic field on the anodic dissolution of nickel in HNO3 + Clâ^ solution.<br>Electrochemistry Communications, 2009, 11, 2109-2112.                                 | 4.7 | 14        |
| 44 | Mapping the transient concentration field within the diffusion layer by use of the digital holographic reconstruction. Electrochemistry Communications, 2008, 10, 392-396.                 | 4.7 | 24        |
| 45 | Numerical reconstruction of digital holograms for the study of pitting dynamic processes of the X70 carbon steel in NaCl solution. Electrochemistry Communications, 2008, 10, 103-107.     | 4.7 | 23        |
| 46 | An investigation on general corrosion and pitting of iron with the in-line digital holography.<br>Electrochimica Acta, 2008, 53, 3109-3119.                                                | 5.2 | 23        |
| 47 | Digital holographic study of the effect of magnetic field on the potentiostatic current oscillations of iron in sulfuric acid. Journal of Electroanalytical Chemistry, 2006, 586, 173-179. | 3.8 | 17        |
| 48 | In-line digital holography for the study of dynamic processes of electrochemical reaction.<br>Electrochemistry Communications, 2004, 6, 643-647.                                           | 4.7 | 33        |
| 49 | Investigation of chloride-induced pitting processes of iron in the H2SO4 solution by the digital holography. Electrochemistry Communications, 2004, 6, 1009-1015.                          | 4.7 | 26        |
| 50 | Investigation of iron anodic process in acidic solution by holographic microphotography.<br>Electrochimica Acta, 1994, 39, 731-736.                                                        | 5.2 | 18        |
| 51 | The nature of the potentiostatic current oscillations at iron/sulfuric acid solution interfaces.<br>Electrochimica Acta, 1994, 39, 577-580.                                                | 5.2 | 31        |