
Xuxun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8556422/publications.pdf Version: 2024-02-01

XUXUN LU

#	Article	IF	CITATIONS
1	A Survey on Clustering Routing Protocols in Wireless Sensor Networks. Sensors, 2012, 12, 11113-11153.	3.8	526
2	Atypical Hierarchical Routing Protocols for Wireless Sensor Networks: A Review. IEEE Sensors Journal, 2015, 15, 5372-5383.	4.7	185
3	Ant colony optimization with greedy migration mechanism for node deployment in wireless sensor networks. Journal of Network and Computer Applications, 2014, 39, 310-318.	9.1	111
4	An Optimal-Distance-Based Transmission Strategy for Lifetime Maximization of Wireless Sensor Networks. IEEE Sensors Journal, 2015, 15, 3484-3491.	4.7	84
5	A Deployment Strategy for Multiple Types of Requirements in Wireless Sensor Networks. IEEE Transactions on Cybernetics, 2015, 45, 2364-2376.	9.5	84
6	A novel transmission range adjustment strategy for energy hole avoiding in wireless sensor networks. Journal of Network and Computer Applications, 2016, 67, 43-52.	9.1	78
7	Data Drainage: A Novel Load Balancing Strategy for Wireless Sensor Networks. IEEE Communications Letters, 2018, 22, 125-128.	4.1	71
8	Routing Protocols Based on Ant Colony Optimization in Wireless Sensor Networks: A Survey. IEEE Access, 2017, 5, 26303-26317.	4.2	67
9	Data Collection in Underwater Sensor Networks based on Mobile Edge Computing. IEEE Access, 2019, 7, 65357-65367.	4.2	59
10	Sensor Deployment of Wireless Sensor Networks Based on Ant Colony Optimization with Three Classes of Ant Transitions. IEEE Communications Letters, 2012, 16, 1604-1607.	4.1	56
11	Energy-Balanced Transmission With Accurate Distances for Strip-Based Wireless Sensor Networks. IEEE Access, 2017, 5, 16193-16204.	4.2	55
12	Load-Balanced Data Dissemination for Wireless Sensor Networks: A Nature-Inspired Approach. IEEE Internet of Things Journal, 2019, 6, 9256-9265.	8.7	51
13	Latency-Aware Path Planning for Disconnected Sensor Networks With Mobile Sinks. IEEE Transactions on Industrial Informatics, 2020, 16, 350-361.	11.3	46
14	Objective-Variable Tour Planning for Mobile Data Collection in Partitioned Sensor Networks. IEEE Transactions on Mobile Computing, 2020, , 1-1.	5.8	44
15	Quick Convex Hull-Based Rendezvous Planning for Delay-Harsh Mobile Data Gathering in Disjoint Sensor Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 3844-3854.	9.3	43
16	Node Deployment Based on Extra Path Creation for Wireless Sensor Networks on Mountain Roads. IEEE Communications Letters, 2017, 21, 2376-2379.	4.1	42
17	Survivability-Aware Connectivity Restoration for Partitioned Wireless Sensor Networks. IEEE Communications Letters, 2017, 21, 2444-2447.	4.1	38
18	A Transmission Scheme for Wireless Sensor Networks Using Ant Colony Optimization With Unconventional Characteristics. IEEE Communications Letters, 2014, 18, 1214-1217.	4.1	35

Xuxun Liu

#	Article	IF	CITATIONS
19	A Cost-Efficient Greedy Code Dissemination Scheme Through Vehicle to Sensing Devices (V2SD) Communication in Smart City. IEEE Access, 2019, 7, 16675-16694.	4.2	35
20	A Node Deployment Strategy for Blindness Avoiding in Wireless Sensor Networks. IEEE Communications Letters, 2015, 19, 1005-1008.	4.1	32
21	Minimizing Delay and Transmission Times with Long Lifetime in Code Dissemination Scheme for High Loss Ratio and Low Duty Cycle Wireless Sensor Networks. Sensors, 2018, 18, 3516.	3.8	31
22	Restoring Connectivity of Damaged Sensor Networks for Long-Term Survival in Hostile Environments. IEEE Internet of Things Journal, 2020, 7, 1205-1215.	8.7	26
23	Utility-Aware Charging Scheduling for Multiple Mobile Chargers in Large-Scale Wireless Rechargeable Sensor Networks. IEEE Transactions on Sustainable Computing, 2021, 6, 679-690.	3.1	24
24	Energy Provision Minimization in Wireless Powered Communication Networks With Node Throughput Requirement. IEEE Transactions on Vehicular Technology, 2019, 68, 7057-7070.	6.3	21
25	Importance-Different Charging Scheduling Based on Matroid Theory for Wireless Rechargeable Sensor Networks. IEEE Transactions on Wireless Communications, 2021, 20, 3284-3294.	9.2	20
26	An Effective Crowdsourcing Data Reporting Scheme to Compose Cloud-Based Services in Mobile Robotic Systems. IEEE Access, 2018, 6, 54683-54700.	4.2	18
27	Channel Resource Scheduling for Stringent Demand of Emergency Data Transmission in WBANs. IEEE Transactions on Wireless Communications, 2021, 20, 2341-2352.	9.2	18
28	A Trust and Priority Based Code Updated Approach to Guarantee Security for Vehicles Network. IEEE Access, 2018, 6, 55780-55796.	4.2	16
29	A Q-learning based Method for Energy-Efficient Computation Offloading in Mobile Edge Computing. , 2020, , .		16
30	Common Throughput Maximization in Wireless Powered Communication Networks With Non-Orthogonal Multiple Access. IEEE Transactions on Vehicular Technology, 2020, 69, 7692-7706.	6.3	14
31	Enhancing Physical Layer Security in Internet of Things via Feedback: A General Framework. IEEE Internet of Things Journal, 2020, 7, 99-115.	8.7	13
32	Resource Scheduling Based on Priority Ladders for Multiple Performance Requirements in Wireless Body Area Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 7027-7036.	6.3	10
33	Joint Scheduling of Tasks and Network Flows in Big Data Clusters. IEEE Access, 2018, 6, 66600-66611.	4.2	6
34	Efficient Resource Scheduling for Interference Alleviation in Dynamic Coexisting WBANs. IEEE Transactions on Mobile Computing, 2021, , 1-1.	5.8	6
35	Edge-Learning-Based Hierarchical Prefetching for Collaborative Information Streaming in Social IoT Systems. IEEE Transactions on Computational Social Systems, 2022, 9, 302-312.	4.4	5
36	Exploring Deep Reinforcement Learning for Task Dispatching in Autonomous On-Demand Services. ACM Transactions on Knowledge Discovery From Data, 2021, 15, 1-23.	3.5	5

Xuxun Liu

#	Article	IF	CITATIONS
37	Traffic Transfer Assisted by Super Nodes for Strip-Shaped Wireless Sensor Networks. IEEE Internet of Things Journal, 2022, 9, 7120-7127.	8.7	4
38	Feedback Coding Schemes for the Broadcast Channel With Mutual Secrecy Requirement at the Receivers. IEEE Transactions on Communications, 2019, 67, 6039-6052.	7.8	3
39	Global Resource Allocation for High Throughput and Low Delay in High-Density VANETs. IEEE Transactions on Wireless Communications, 2022, 21, 9509-9518.	9.2	1
40	Detection of Temporal Communities in Mobile Social Networks. , 2020, , .		0
41	Incentive-driven Data Offloading and Caching Replacement Scheme in Opportunistic Mobile Networks. , 2020, , .		0
42	Load-Balanced Topology Rebuilding for Disconnected Wireless Sensor Networks With Delay Constraint. IEEE Transactions on Sustainable Computing, 2022, , 1-11.	3.1	0