
Zhen Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/855549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nature Communications, 2016, 7, 13740.	5.8	549
2	From Alloy-Like to Cascade Blended Structure: Designing High-Performance All-Small-Molecule Ternary Solar Cells. Journal of the American Chemical Society, 2018, 140, 1549-1556.	6.6	145
3	Thermodynamic Properties and Molecular Packing Explain Performance and Processing Procedures of Three D18:NFA Organic Solar Cells. Advanced Materials, 2020, 32, e2005386.	11.1	130
4	Selective Hole and Electron Transport in Efficient Quaternary Blend Organic Solar Cells. Joule, 2020, 4, 1790-1805.	11.7	110
5	Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1602552.	10.2	97
6	Acceptor Endâ€Capped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2016, 28, 5980-5985.	11.1	87
7	Improve the Performance of the All‣mallâ€Molecule Nonfullerene Organic Solar Cells through Enhancing the Crystallinity of Acceptors. Advanced Energy Materials, 2018, 8, 1702377.	10.2	87
8	Tailoring non-fullerene acceptors using selenium-incorporated heterocycles for organic solar cells with over 16% efficiency. Journal of Materials Chemistry A, 2020, 8, 23756-23765.	5.2	85
9	High Miscibility Compatible with Ordered Molecular Packing Enables an Excellent Efficiency of 16.2% in Allâ€6mallâ€Molecule Organic Solar Cells. Advanced Materials, 2022, 34, e2106316.	11.1	74
10	Deciphering the Role of Chalcogen-Containing Heterocycles in Nonfullerene Acceptors for Organic Solar Cells. ACS Energy Letters, 2020, 5, 3415-3425.	8.8	73
11	A–π–D–π–A Electronâ€Đonating Small Molecules for Solutionâ€Processed Organic Solar Cells: A Review Macromolecular Rapid Communications, 2017, 38, 1700470.	^{v.} 2.0	70
12	Modulating Energy Level on an Aâ€Dâ€A′â€Dâ€Aâ€Type Unfused Acceptor by a Benzothiadiazole Core Enables Organic Solar Cells with Simple Procedure and High Performance. Solar Rrl, 2020, 4, 2000421.	⁵ 3.1	48
13	Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells. Advanced Science, 2015, 2, 1500250.	5.6	43
14	Incorporation of alkylthio side chains on benzothiadiazole-based non-fullerene acceptors enables high-performance organic solar cells with over 16% efficiency. Journal of Materials Chemistry A, 2020, 8, 23239-23247.	5.2	39
15	Two-dimensional benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]difuran-based wide bandgap conjugated polymers for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4023-4031.	5.2	37
16	Orientationally engineered 2D/3D perovskite for high efficiency solar cells. Sustainable Energy and Fuels, 2020, 4, 324-330.	2.5	35
17	Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules. Nature Communications, 2018, 9, 3808.	5.8	34
18	Versatile asymmetric thiophene/benzothiophene flanked diketopyrrolopyrrole polymers with ambipolar properties for OFETs and OSCs. Polymer Chemistry, 2017, 8, 5603-5610.	1.9	33

ZHEN WANG

19	Fluorination-substitution effect on all-small-molecule organic solar cells. Science China Chemistry, 2019, 62, 837-844.	4.2	32
20	Modulation of the Molecular Orientation at the Bulk Heterojunction Interface via Tuning the Small Molecular Donor–Nonfullerene Acceptor Interactions. ACS Applied Materials & Interfaces, 2018, 10, 31526-31534.	4.0	26
21	Organic Solar Cells Based on High Hole Mobility Conjugated Polymer and Nonfullerene Acceptor with Comparable Bandgaps and Suitable Energy Level Offsets Showing Significant Suppression of <i>J</i> _{sc} – <i>V</i> _{oc} Tradeâ€Off. Solar Rrl, 2019, 3, 1900079.	3.1	25
22	Impact of Isomer Design on Physicochemical Properties and Performance in High-Efficiency All-Polymer Solar Cells. Macromolecules, 2020, 53, 9026-9033.	2.2	25
23	Wide-Bandgap Conjugated Polymers Based on Alkylthiofuran-Substituted Benzo[1,2- <i>b</i> :4,5- <i>b</i> à€2]difuran for Efficient Fullerene-Free Polymer Solar Cells. Macromolecules, 2018, 51, 2498-2505.	2.2	23
24	Ternary Organic Solar Cells Based on Two Nonâ€fullerene Acceptors with Complimentary Absorption and Balanced Crystallinity. Chinese Journal of Chemistry, 2020, 38, 935-940.	2.6	21
25	Branched Alkoxy Side Chain Enables High-Performance Non-Fullerene Acceptors with High Open-Circuit Voltage and Highly Ordered Molecular Packing. Chemistry of Materials, 2022, 34, 2059-2068.	3.2	20
26	Aromatic end-capped acceptor effects on molecular stacking and the photovoltaic performance of solution-processable small molecules. Journal of Materials Chemistry A, 2018, 6, 22077-22085.	5.2	19
27	An Asymmetrical Polymer Based on Thieno[2,3- <i>f</i>]benzofuran for Efficient Fullerene-Free Polymer Solar Cells. ACS Applied Energy Materials, 2018, 1, 1888-1892.	2.5	18
28	1D/2A ternary blend active layer enables as-cast polymer solar cells with higher efficiency, better thickness tolerance, and higher thermal stability. Organic Electronics, 2018, 61, 359-365.	1.4	18
29	Efficient Polymer Solar Cells With High Fill Factor Enabled by A Furo[3,4]pyrroleâ€4,6â€dioneâ€Based Copolymer. Solar Rrl, 2019, 3, 1900012.	3.1	17
30	Chain Engineering of Benzodifuranâ€Based Wideâ€Bandgap Polymers for Efficient Nonâ€Fullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2019, 40, e1900227.	2.0	15
31	Functionalization of Benzotriazole-Based Conjugated Polymers for Solar Cells: Heteroatom vs Substituents. ACS Applied Polymer Materials, 2021, 3, 30-41.	2.0	14
32	Selfâ€Doped and Crownâ€Ether Functionalized Fullerene as Cathode Buffer Layer for Highlyâ€Efficient Inverted Polymer Solar Cells. Advanced Energy Materials, 2016, 6, .	10.2	13
33	Suppressing charge recombination in small-molecule ternary organic solar cells by modulating donor–acceptor interfacial arrangements. Physical Chemistry Chemical Physics, 2018, 20, 24570-24576.	1.3	13
34	Naphtho[1,2â€b:5,6â€b′]dithiopheneâ€Based Conjugated Polymers for Fullereneâ€Free Inverted Polymer So Cells. Macromolecular Rapid Communications, 2018, 39, e1700872.	^{lar} 2.0	11
35	Creating Side Transport Pathways in Organic Solar Cells by Introducing Delayed Fluorescence Molecules. Chemistry of Materials, 2021, 33, 4578-4585.	3.2	11
36	A-ï€-D-ï€-A small-molecule donors with different end alkyl chains obtain different morphologies in organic solar cells. Chinese Chemical Letters, 2019, 30, 906-910.	4.8	8

ZHEN WANG

#	Article	IF	CITATIONS
37	Revealing aggregation of non-fullerene acceptors in intermixed phase by ultraviolet-visible absorption spectroscopy. Cell Reports Physical Science, 2022, 3, 100983.	2.8	6
38	Efficient post-treatment-free polymer solar cells from indacenodithiophene and fluorinated quinoxaline-based conjugated polymers. Dyes and Pigments, 2018, 154, 164-171.	2.0	5
39	Optically Probing Field-Dependent Charge Dynamics in Non-Fullerene Organic Photovoltaics with Small Interfacial Energy Offsets. Journal of Physical Chemistry C, 2021, 125, 1714-1722.	1.5	5
40	Fluorination Induced Donor to Acceptor Transformation in A1–D–A2–D–A1-Type Photovoltaic Small Molecules. Frontiers in Chemistry, 2018, 6, 384.	1.8	4
41	Effect of Side-Chain Variation on Single-Crystalline Structures for Revealing the Structure–Property Relationships of Organic Solar Cells. Organic Materials, 2020, 02, 026-032.	1.0	1