Der-Jang Liaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555451/publications.pdf

Version: 2024-02-01

163	8,429	43	87
papers	citations	h-index	g-index
163	163	163	5986
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 2012, 37, 907-974.	11.8	1,666
2	Polymer electronic memories: Materials, devices and mechanisms. Progress in Polymer Science, 2008, 33, 917-978.	11.8	924
3	Synthesis and Dynamic Random Access Memory Behavior of a Functional Polyimide. Journal of the American Chemical Society, 2006, 128, 8732-8733.	6.6	301
4	High Glass Transitions of New Polyamides, Polyimides, and Poly(amideâ^imide)s Containing a Triphenylamine Group:Â Synthesis and Characterization. Macromolecules, 2002, 35, 4669-4676.	2.2	230
5	High Thermal Stability and Rigid Rod of Novel Organosoluble Polyimides and Polyamides Based on Bulky and Noncoplanar Naphthaleneâ^Biphenyldiamine. Macromolecules, 2005, 38, 4024-4029.	2.2	227
6	Polymer memories: Bistable electrical switching and device performance. Polymer, 2007, 48, 5182-5201.	1.8	211
7	Synthesis and Characterization of New Soluble Polyimides from 3,3â€~,4,4â€~-Benzhydrol Tetracarboxylic Dianhydride and Various Diamines. Chemistry of Materials, 1998, 10, 734-739.	3.2	113
8	Novel Organosoluble Poly(pyridineâ^imide) with Pendent Pyrene Group:Â Synthesis, Thermal, Optical, Electrochemical, Electrochromic, and Protonation Characterization. Macromolecules, 2007, 40, 3568-3574.	2.2	110
9	Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio. Nature Communications, 2019, 10, 1239.	5.8	109
10	Light-Scattering Study of a Zwitterionic Polycarboxybetaine in Aqueous Solution. Macromolecules, 2000, 33, 3492-3494.	2.2	108
11	Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2′-dimethyl-4,4′-biphenylene units. Polymer, 2006, 47, 2337-2348.	1.8	107
12	Effect of chemical structures of amines on physicochemical properties of active layers and dehydration of isopropanol through interfacially polymerized thin-film composite membranes. Journal of Membrane Science, 2008, 307, 73-81.	4.1	106
13	Synthesis and properties of new polyimide–silica hybrid films through both intrachain and interchain bonding. Polymer, 2003, 44, 7079-7087.	1.8	98
14	Synthesis and characterization of new polyamide-imides containing pendent adamantyl groups. Polymer, 2001, 42, 839-845.	1.8	94
15	Aqueous solution properties of poly[3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate]. Journal of Applied Polymer Science, 1987, 34, 999-1011.	1.3	91
16	High glass transition and thermal stability of new pyridine-containing polyimides: Effect of protonation on fluorescence. Polymer, 2008, 49, 1538-1546.	1.8	90
17	Synthesis and properties of new polyamides and polyimides derived from 2,2′-dimethyl-4,4′-bis(4-aminophenoxy)biphenyl. Polymer, 1998, 39, 1597-1607.	1.8	89
18	Synthesis and Properties of New Polyamides Based on Bis[4-(4-aminophenoxy)phenyl]diphenylmethane. Macromolecules, 1999, 32, 7248-7250.	2.2	86

#	Article	lF	Citations
19	Recent advances in electrochromic polymers. Polymer, 2014, 55, 5293-5304.	1.8	85
20	Sorption and transport properties of gases in aromatic polyimide membranes. Journal of Membrane Science, 2005, 248, 15-25.	4.1	83
21	Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites. Journal of Applied Physics, 2007, 102, 024502.	1.1	81
22	Preparation and properties of polyimide-clay nanocomposite materials for anticorrosion application. Journal of Applied Polymer Science, 2004, 92, 3573-3582.	1.3	78
23	Synthesis and characterization of new organosoluble polyimides based on flexible diamine. Polymer, 2001, 42, 5175-5179.	1.8	73
24	Highly organosoluble and flexible polyimides with color lightness and transparency based on 2,2-bis [4-(2-trifluoromethyl-4-aminophenoxy)-3,5-dimethylphenyl]propane. Journal of Polymer Science Part A, 2004, 42, 5766-5774.	2.5	69
25	Gas separation properties of aromatic poly(amide-imide) membranes. European Polymer Journal, 2006, 42, 140-148.	2.6	65
26	High glass transitions of novel organosoluble polyamide-imides based on noncoplanar and rigid diimide-dicarboxylic acid. Polymer Degradation and Stability, 2006, 91, 1731-1739.	2.7	65
27	Volatile electrical switching in a functional polyimide containing electron-donor and -acceptor moieties. Journal of Applied Physics, 2009, 105, .	1.1	63
28	Novel interfacially-polymerized polyamide thin-film composite membranes: Studies on characterization, pervaporation, and positron annihilation spectroscopy. Polymer, 2011, 52, 2414-2421.	1.8	63
29	Novel poly(pyridine imide) with pendent naphthalene groups: Synthesis and thermal, optical, electrochemical, electrochromic, and protonation characterization. Journal of Polymer Science Part A, 2007, 45, 2367-2374.	2.5	62
30	<i>N,N</i> ,N′,N′- Tetraphenyl-1,4-phenylenediamineâ²Fluorene Alternating Conjugated Polymer: Synthesis, Characterization, and Electrochromic Application. Macromolecules, 2010, 43, 2236-2243.	2.2	60
31	Synthesis and properties of new polyimides derived from 1,1-bis[4-(4-aminophenoxy)phenyl]cyclododecane. Polymer, 1999, 40, 3183-3189.	1.8	58
32	Synthesis and Characterization of New Highly Organosoluble Poly(ether imide)s Bearing a Noncoplanar 2,2â€~-Dimethyl-4,4â€~-biphenyl Unit and Kink Diphenylmethylene Linkage. Chemistry of Materials, 2001, 13, 1811-1816.	3.2	58
33	Synthesis and characterization of novel polyamide-imides containing noncoplanar 2,2?-dimethyl-4,4?-biphenylene unit. Journal of Polymer Science Part A, 2001, 39, 63-70.	2.5	57
34	Synthesis and characterization of fluorine-containing polyamides derived from 2,2-bis [4-(4-aminophenoxy)phenyl]hexafluoropropane by direct polycondensation. Journal of Polymer Science Part A, 1996, 34, 1209-1217.	2.5	54
35	High optical transparency, low dielectric constant and light color of novel organosoluble polyamides with bulky alicyclic pendent group. Polymer, 2007, 48, 6571-6580.	1.8	54
36	Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution. Separation and Purification Technology, 2008, 62, 694-701.	3.9	53

#	Article	IF	CITATIONS
37	Investigation of Multilayer Pervaporation Membrane by Positron Annihilation Spectroscopy. Macromolecules, 2008, 41, 6438-6443.	2.2	50
38	Synthesis and properties of polyimides derived from 1,4-Bis(4-Aminophenoxy)2,5-di-tert-Butylbenzene. Journal of Polymer Science Part A, 1997, 35, 1527-1534.	2.5	49
39	Synthesis and Properties of Polyimides Derived from 1,4-Bis(4-aminophenoxy)-2-tert-butylbenzene. Polymer Journal, 1996, 28, 970-975.	1.3	48
40	A novel fluorescent poly(pyridine-imide) acid chemosensor. Dyes and Pigments, 2008, 78, 93-100.	2.0	48
41	Flexible Electrochromic Devices Based on Optoelectronically Active Polynorbornene Layer and Ultratransparent Graphene Electrodes. Macromolecules, 2011, 44, 9550-9555.	2.2	46
42	Synthesis and Properties of New Soluble Polyamides Derived from 2,2 -Dimethyl-4,4 -bis(4-carboxyphenoxy)biphenyl. Macromolecules, 1999, 32, 6860-6863.	2.2	45
43	Self-Assembly Aggregation of Highly Stable Copolynorbornenes with Amphiphilic Architecture via Ring-Opening Metathesis Polymerization. Macromolecules, 2005, 38, 3533-3538.	2.2	45
44	Tunable and Processable Shape-Memory Materials Based on Solvent-Free, Catalyst-Free Polycondensation between Formaldehyde and Diamine at Room Temperature. ACS Macro Letters, 2019, 8, 582-587.	2.3	45
45	Synthesis and characterization of new soluble poly(ester-imide)s containing noncoplanar 2,2?-dimethyl-4,4?-biphenylene unit. Journal of Applied Polymer Science, 2004, 92, 2486-2493.	1.3	44
46	Preparation and properties of (BATB-ODPA) polyimide-clay nanocomposite materials. Journal of Applied Polymer Science, 2004, 92, 1072-1079.	1.3	43
47	Novel thermally stable and chiral poly(amide-imide)s bearing from N,N′-(4,4′-diphthaloyl)-bis-l-isoleucine diacid: Synthesis and characterization. Polymer Degradation and Stability, 2007, 92, 323-329.	2.7	43
48	Synthesis and characterization of new polyamides and polyimides prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]adamantane. Macromolecular Chemistry and Physics, 1999, 200, 1326-1332.	1.1	40
49	Novel triarylamineâ€based alternating conjugated polymer with high hole mobility: Synthesis, electroâ€optical, and electronic properties. Journal of Polymer Science Part A, 2010, 48, 4654-4667.	2.5	40
50	Synthesis and characterization of novel poly(amide-imide)s containing hexafluoroisopropylidene linkage. Journal of Polymer Science Part A, 1999, 37, 2629-2635.	2.5	37
51	Synthesis and characterization of new soluble polyesters derived from various cardo bisphenols by solution polycondensation. Journal of Polymer Science Part A, 2000, 38, 4451-4456.	2.5	37
52	Synthesis and characterization of block copolymer with pendant carbazole group via living ring-opening metathesis polymerization. Polymer, 2000, 41, 2773-2780.	1.8	37
53	Novel multifunctional polymeric materials with predominant cis microstructures derived from α-norbornenyl macromonomer and stable macroinitiator via ring-opening metathesis polymerization and atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 3382-3392.	2.5	37
54	Positron annihilation study on thin-film composite pervaporation membranes: Correlation between polyamide fine structure and different interfacial polymerization conditions. Polymer, 2010, 51, 1370-1376.	1.8	35

#	Article	IF	Citations
55	Novel rapid switching and bleaching electrochromic polyimides containing triarylamine with 2-phenyl-2-isopropyl groups. Polymer, 2010, 51, 4493-4502.	1.8	35
56	Polynorbornene with Cross-Linkable Side Chains via Ring-Opening Metathesis Polymerization. Macromolecules, 2000, 33, 6925-6929.	2.2	33
57	Optically high transparency and light color of organosoluble polyamides containing trifluoromethyl and kink diphenylmethylene linkage. Journal of Polymer Science Part A, 2005, 43, 4559-4569.	2.5	33
58	Synthesis and characterization of new soluble polyamides based on 3,3?,5,5?-tetramethyl-2,2-bis[4-(4-aminophenoxy)phenyl]propane and various aromatic dicarboxylic acids. Journal of Polymer Science Part A, 1998, 36, 1075-1080.	2.5	32
59	Synthesis and characterization of new soluble polyimides derived from 2,2-bis[3,5-dimethyl-4-(4-aminophenoxy)phenyl]propane. Macromolecular Chemistry and Physics, 1998, 199, 1473-1478.	1.1	32
60	Synthesis and characterization of new poly(amide-imide)s from 1,4-bis(4-trimellitimidophenoxy)-2-tert-butylbenzene with various diamines. Journal of Polymer Science Part A, 1998, 36, 2301-2307.	2.5	31
61	Synthesis and characterization of new adamantane-type cardo polyamides. Acta Polymerica, 1999, 50, 135-140.	1.4	31
62	Synthesis and characterization of new highly organosoluble poly(etherimide)s derived from 1,1-bis{4-[4-(3,4-dicarboxyphenoxy)phenyl]-4-phenylcyclohexane} dianhydride. Journal of Polymer Science Part A, 2002, 40, 2066-2074.	2.5	31
63	Synthesis and characterization of new soluble cardo poly(amide–imide)s derived from 2,2-bis[4-(4-trimellitimidophenoxy)phenyl]norbornane. Polymer, 2003, 44, 3865-3870.	1.8	31
64	Synthesis and electroluminescent properties of polyfluoreneâ€based conjugated polymers containing bipolar groups. Journal of Polymer Science Part A, 2009, 47, 6231-6245.	2.5	31
65	Optically Transparency and Light Color of Novel Highly Organosoluble Alicyclic Polyimides with 4-tert-Butylcyclohexyl Group. Macromolecular Chemistry and Physics, 2006, 207, 434-443.	1.1	30
66	Effects of the polymerization and pervaporation operating conditions on the dehydration performance of interfacially polymerized thinâ€film composite membranes. Journal of Applied Polymer Science, 2009, 114, 1511-1522.	1.3	29
67	Transmissive-to-black fast electrochromic switching from a long conjugated pendant group and a highly dispersed polymer/SWNT. Polymer Chemistry, 2018, 9, 619-626.	1.9	29
68	Dilute solution properties of poly(3-dimethyl acryloyloxyethyl ammonium propiolactone). Polymer, 1997, 38, 6355-6362.	1.8	28
69	Optical properties of a novel fluoreneâ€based thermally stable conjugated polymer containing pyridine and unsymmetric carbazole groups. Journal of Polymer Science Part A, 2009, 47, 991-1002.	2.5	28
70	Synthesis and characterization of new soluble polyamides containing ether and pendant cyclododecylidene groups. Polymers for Advanced Technologies, 1998, 9, 740-745.	1.6	27
71	Synthesis and characterization of new soluble polyamides containing phthalimide pendent group. Journal of Polymer Science Part A, 2001, 39, 1557-1563.	2.5	27
72	Interfacially polymerized thin-film composite polyamide membrane: positron annihilation spectroscopic study, characterization and pervaporation performance. Polymer Journal, 2010, 42, 242-248.	1.3	27

#	Article	IF	CITATIONS
73	Synthesis and properties of new soluble poly(amide-imide)s from 3,3â \in 2,5,5â \in 2-tetramethyl-2,2-bis[4-(4-trimellitimidophenoxy)phenyl]propane with various diamines. Polymer, 1999, 40, 4041-4047.	1.8	26
74	Novel Organosoluble Poly(amide-imide)s Derived from Kink Diamine Bis[4-(4-trimellitimidophenoxy)phenyl]-diphenylmethane. Synthesis and Characterization. Macromolecular Chemistry and Physics, 2001, 202, 1483-1487.	1.1	26
75	Effects of the architecture and environment on polymeric molecular assemblies of novel amphiphilic diblock copolynorbornenes with narrow polydispersity via living ring-opening metathesis polymerization. Journal of Polymer Science Part A, 2006, 44, 2901-2911.	2.5	26
76	A novel, conjugated polymer containing fluorene, pyridine and unsymmetric carbazole moieties: Synthesis, protonation and electrochemical properties. Dyes and Pigments, 2009, 82, 109-117.	2.0	26
77	Electrochromic material containing unsymmetrical substituted $\langle i \rangle N, N, N \equiv 0$, $\langle i \rangle \in 0$,	2.5	26
78	Improving the efficiency of an organic solar cell by a polymer additive to optimize the charge carriers mobility. Applied Physics Letters, 2011, 99, 223305.	1.5	26
79	Photophysical and Solution Properties of Naphthalene-Labeled Styrene/N,N-Dimethyl Maleimido Propylammonium Propane Sulfonate Copolymer. Langmuir, 1998, 14, 3195-3201.	1.6	25
80	Synthesis and characterization of new soluble polyaspartimides derived from bis(3-ethyl-5-methyl-4-maleimidophenyl)methane and various diamines. Polymer, 2001, 42, 867-872.	1.8	25
81	Synthesis and properties of polyimides derived from 3,3â€2,5,5â€2-tetramethyl-bis[4-(4-aminophenoxy)phenyl]sulfone. European Polymer Journal, 1997, 33, 1423-143	32.6 31.	24
82	Synthesis and characterization of new soluble polyamides derived from 3,3?,5,5?-tetramethyl-2,2-bis[4-(4-carboxyphenoxy)phenyl]propane. Journal of Polymer Science Part A, 1999, 37, 1997-2003.	2.5	24
83	Characterization, transport and sorption properties of poly(thiol ester amide) thin-film composite pervaporation membranes. Journal of Membrane Science, 2008, 322, 139-145.	4.1	24
84	Novel poly(triphenylamine- <i>alt</i> -fluorene) with asymmetric hexaphenylbenzene and pyrene moieties: synthesis, fluorescence, flexible near-infrared electrochromic devices and theoretical investigation. Polymer Chemistry, 2016, 7, 1505-1516.	1.9	24
85	Ring-opening metathesis polymerization of new norbornene-based monomers containing various chromophores. Journal of Polymer Science Part A, 2007, 45, 3022-3031.	2.5	23
86	Synthesis and Characterization of New Cardo Polyimides Containing Pendent Norbornane Group. Polymer Journal, 1999, 31, 1270-1273.	1.3	22
87	A study on the characteristics and pervaporation performance of polyamide thin-film composite membranes with modified polyacrylonitrile as substrate for bioethanol dehydration. Polymer International, 2014, 63, 1478-1486.	1.6	22
88	Synthesis and properties of new polyamides derived from 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene and aromatic dicarboxylic acids. Journal of Polymer Science Part A, 1998, 36, 1069-1074.	2.5	21
89	Synthesis and characterization of new cardo polyimides prepared from 5,5-Bis[4-(4-aminophenoxy)phenyl]-4,7-methanohexahydroindane. Journal of Polymer Science Part A, 1999, 37, 2815-2821.	2.5	21
90	Synthesis and characterization of new soluble cardo polyesters derived from 1,1-bis-[4-(4-chlorocarboxyphenoxy)phenyl]-4-tert-butylcyclohexane with various bisphenols by solution polycondensation. Journal of Polymer Science Part A, 2001, 39, 2951-2956.	2.5	21

#	Article	IF	CITATIONS
91	A low molecular mass organogelator electrolyte with TiO ₂ nanoparticles for stable and efficient quasi-solid-state dye sensitized solar cells. RSC Advances, 2017, 7, 7671-7678.	1.7	21
92	Novel doubly polymerizable functional norbornene: Its synthesis, reactivity, and macromolecular architectures from a dual cure via ring-opening metathesis polymerization and radical photopolymerization. Journal of Polymer Science Part A, 2006, 44, 6287-6298.	2.5	20
93	Novel fluorescent polynorbornenes with multi-functional armed structure by using highly stable block macroinitiators via a combination of living ring-opening metathesis polymerization and atom transfer radical polymerization. Polymer, 2006, 47, 3057-3064.	1.8	20
94	Cationic cyclization of purified natural rubber in latex form with a trimethylsilyl triflate as a novel catalyst. Journal of Applied Polymer Science, 2007, 105, 664-672.	1.3	20
95	Experimental and theoretical investigation of a new rapid switching nearâ€infrared electrochromic conjugated polymer. Journal of Polymer Science Part A, 2010, 48, 3913-3923.	2.5	20
96	Correlating the microstructure of novel polyamide thin-film composite membranes with ethanol dehydration performances. Polymer, 2013, 54, 1381-1387.	1.8	20
97	Synthesis and characterization of new highly organosoluble poly(ether imide)s derived from 1,1-bis[4-(4-dicarboxyphenoxy)phenyl]-4-tert-butylcyclohexane dianhydride. Polymer, 2001, 42, 7993-7998.	1.8	19
98	Synthesis and characterization of new organosoluble polyamides derived from bis [4-(4-carboxyphenoxy) phenyl]diphenylmethane. Journal of Polymer Science Part A, 2001, 39, 1156-1161.	2.5	19
99	Novel heterocyclic poly(pyridineâ€imide)s with unsymmetric carbazole substituent and noncoplanar structure: High thermal, mechanical and optical transparency, electrochemical, and electrochromic properties. Journal of Polymer Science Part A, 2015, 53, 405-412.	2.5	19
100	Toward a universal polymeric material for electrode buffer layers in organic and perovskite solar cells and organic light-emitting diodes. Energy and Environmental Science, 2018, 11, 682-691.	15.6	19
101	Synthesis and characterization of copolycarbonates from melt transesterification. Polymer, 1996, 37, 2857-2863.	1.8	17
102	Synthesis and characterization of novel polyaspartimides derived from 2,2?-dimethyl-4,4?-bis(4-maleimidophenoxy)biphenyl and various diamines. Journal of Applied Polymer Science, 1999, 73, 279-286.	1.3	17
103	Synthesis and characterization of norbornane-containing cardo polyamides. Journal of Polymer Science Part A, 1999, 37, 2791-2794.	2.5	17
104	Synthesis and properties of new polyimides derived from bis [4-(4-aminophenoxy)phenyl]diphenylmethane with various dianhydrides. Acta Polymerica, 1999, 50, 332-336.	1.4	17
105	Solvent Response and Protonation Effects of Novel Aramides Containing Pyridine and Unsymmetrical Carbazole Moieties. Macromolecules, 2013, 46, 7443-7450.	2.2	17
106	Synthesis and characterization of new cardo polyamide-imides containing ether and tricyclo [5.2.1.02, 6] decane groups. Macromolecular Chemistry and Physics, 1999, 200, 2402-2406.	1.1	16
107	Novel active ester-bridged copolynorbornene materials containing terminal functional hydroxyl, amino, methacryloyl, or ammonium groups via ring-opening metathesis polymerization. Journal of Polymer Science Part A, 2005, 43, 4233-4247.	2.5	16
108	Copolymerization of carbon monoxide and norbornene derivatives with ester groups by palladium catalyst. Journal of Polymer Science Part A, 1998, 36, 1785-1790.	2.5	15

#	Article	IF	Citations
109	Synthesis and characterization of novel polyaryloxydiphenylsilane derived from 2,2?-dimethyl-biphenyl-4,4?-diol. Journal of Polymer Science Part A, 1999, 37, 4591-4595.	2.5	14
110	New organosoluble polyimides with low dielectric constants derived from bis [4-(2-trifluoromethyl-4-aminophenoxy)phenyl] diphenylmethylene. Macromolecular Symposia, 2003, 199, 351-362.	0.4	14
111	Novel organosoluble polynorbornene bearing a polar, pendant, ester-bridged epoxy group via living ring-opening metathesis polymerization. Journal of Polymer Science Part A, 2006, 44, 4428-4434.	2.5	14
112	Synthesis and characterization of novel thermally stable and optically active poly(amide-imide)s derived from N, Nâ \in 2-(4,4â \in 2-diphthaloyl)-bis-L-leucine diacid and aromatic diamines. Journal of Applied Polymer Science, 2007, 104, 3096-3102.	1.3	14
113	A brief review of nanoparticles-doped PEDOT:PSS nanocomposite for OLED and OPV. Nanotechnology Reviews, 2022, 11, 1870-1889.	2.6	14
114	Synthesis and characterization of new soluble polyamides from 1,1-bis [4-(4-carboxyphenoxy)phenyl]-4-tert-butylcyclohexane and various diamines. Journal of Polymer Science Part A, 2000, 38, 797-803.	2.5	13
115	Synthesis and characterization of new soluble cardo polyamide-imides containing cyclododecyl groups. Journal of Polymer Science Part A, 2000, 38, 2787-2793.	2.5	13
116	Synthesis and characterization of new soluble poly(amide-imide)s derived from 2,2-bis[4-(4-trimellitimidophenoxy)phenyl]hexafluoropropane. Journal of Polymer Science Part A, 2001, 39, 3498-3504.	2.5	13
117	Synthesis and computational oxidation mechanism study of novel organosoluble aramids with high modulus by lowâ€ŧemperature solution polycondensation. Journal of Polymer Science Part A, 2010, 48, 5659-5669.	2.5	13
118	Neutrally colourless, transparent and thermally stable polynorbornenes via ring-opening metathesis polymerisation for near-infrared electroactive applications. Journal of Materials Chemistry, 2011, 21, 8597.	6.7	13
119	Synthesis and optoelectronic properties of novel organosoluble polynorbornenes containing asymmetric pyrenyl and electroactive substituents via ringâ€opening metathesis polymerization. Journal of Polymer Science Part A, 2011, 49, 5350-5357.	2.5	13
120	High-Purity Semiconducting Single-Walled Carbon Nanotubes via Selective Dispersion in Solution Using Fully Conjugated Polytriarylamines. Macromolecules, 2016, 49, 8520-8529.	2.2	13
121	Highly Organosoluble Polyimides with Pendent Cyclododecane Group: Synthesis and Characterization. Macromolecular Chemistry and Physics, 2002, 203, 2170-2176.	1.1	12
122	Synthesis and characterization of new highly organosoluble poly(ether imide)s based on 3,3?,5,5?-tetramethyl-2,2-bis[4-(4-dicarboxyphenoxy)phenyl]propane dianhydride. Journal of Polymer Science Part A, 2002, 40, 2556-2563.	2.5	12
123	High glass transition and thermally stable polynorbornenes containing fluorescent dipyrene moieties via ringâ€opening metathesis polymerization. Journal of Polymer Science Part A, 2011, 49, 3673-3680.	2.5	12
124	Digital Memory Characteristics of Aromatic Polyimides Based on Pyridine and Its Derivatives. ACS Omega, 2018, 3, 13036-13044.	1.6	11
125	SYNTHESIS AND PROPERTIES OF POLYIMIDES DERIVED FROM 2,2-BIS[4-[2-(4-AMINOPHENOXY)ETHOXY]PHENYL]PROPANE. European Polymer Journal, 1997, 33, 997-1004.	2.6	10
126	Preparation of neutrally colorless, transparent polynorbornenes with multiple redoxâ€active chromophores via ringâ€opening metathesis polymerization toward electrochromic applications. Journal of Polymer Science Part A, 2011, 49, 3248-3259.	2.5	10

#	Article	IF	Citations
127	Structurally defined nanographene-containing conjugated polymers for high quality dispersions and optoelectronic applications. Polymer Chemistry, 2016, 7, 6211-6219.	1.9	10
128	Synthesis and Characterization of New Highly Soluble Organic Polyimides. Springer Series in Materials Science, 2004, , 80-100.	0.4	9
129	Dilute solution properties of poly(3-trimethyl methacrylamido propyl ammonium methylsulfate). European Polymer Journal, 1997, 33, 829-836.	2.6	8
130	Synthesis and characterization of novel benzhydrol-containing poly(amide-imide)s. Polymer International, 1999, 48, 473-478.	1.6	8
131	Sorption behavior of polyaramides in relation to isolation of nucleic acids and proteins. Colloids and Surfaces B: Biointerfaces, 2016, 145, 912-921.	2.5	8
132	Versatile preparation of vesicle from amphiphilic bottlebrush block copolymers. Reactive and Functional Polymers, 2019, 134, 166-173.	2.0	8
133	Theoretical Study of Electrochemical and Electrochromic Properties of Novel Viologen Derivatives: Effects of Donors and Ï∈-Conjugation. Journal of Physical Chemistry B, 2019, 123, 4735-4744.	1.2	8
134	Preparation and characterization of new polyimides derived from 2,2-bis[4-[2-(4-aminophenoxy)ethoxy]phenyl]sulfone. Polymers for Advanced Technologies, 1999, 10, 13-19.	1.6	7
135	Enhancing the emission of hexa-peri-hexabenzocoronene-containing polynorbornene via electron donating, unsymmetric constitution and solvent effects. Polymer Chemistry, 2017, 8, 3327-3332.	1.9	7
136	Compatibility and Crystallization Studies on Poly(phenyl acetylene)/Polycaprolactone Blend. Polymer Journal, 1998, 30, 874-878.	1.3	6
137	Photolysis of bisphenol-based polyurethanes in solution. Journal of Polymer Science Part A, 1999, 37, 1331-1339.	2.5	6
138	Effect of Surfactant and Various Salts on Aqueous Solution Properties of Naphthalene-Labeled Poly(hydrochloride-quaternized 2-norbornene-5-methylamine) made by Ring-Opening Metathesis Polymerization (ROMP). Macromolecular Chemistry and Physics, 2002, 203, 2177-2187.	1.1	6
139	Permselectivities of 2,2′-dimethyl-4,4′-bis(aminophenoxyl)biphenyl diphenyl methane–based aromatic polyamide membranes for aqueous alcohol mixtures in pervaporation and evapomeation. Journal of Applied Polymer Science, 2003, 88, 2688-2697.	1.3	6
140	Synthesis of novel thermally stable electrochromic polynorbornenes containing symmetrical diarylamine and unsymmetrical triarylamine chromophores via ring-opening metathesis polymerisation. Polymer, 2012, 53, 1849-1856.	1.8	6
141	Catalystâ€Free Oneâ€6tep Preparation of Selfâ€Crosslinked pHâ€Responsive Vesicles. Macromolecular Rapid Communications, 2019, 40, 1900149.	2.0	6
142	Radical polymerization of methacryloyl isocyanate containing 1-adamantanol. Polymer Bulletin, 1999, 42, 373-378.	1.7	5
143	Radical polymerization of new functional monomers derived from methacryloyl isocyanate and urea. Journal of Polymer Science Part A, 1999, 37, 1789-1796.	2.5	5
144	Synthesis and characterization of new soluble cardo polyamides containing the tricyclo[5.2.1.02,6]decane group. Journal of Polymer Science Part A, 2000, 38, 74-79.	2.5	5

#	Article	IF	CITATIONS
145	Synthesis and Characterization of New Soluble Cardo Polyamides Derived from 2,2-Bis[4-(4-carboxyphenoxy)phenyl]norbornane. Polymer Journal, 2001, 33, 204-208.	1.3	5
146	Photophysical and Electroluminescence Characteristics of Polyfluorene Derivatives with Triphenylamine. Polymers, 2019, 11, 840.	2.0	5
147	Studies on graft copolymerization of cyclohexyl methacrylate onto 1,2-polybutadiene. Journal of Applied Polymer Science, 1989, 37, 1993-2006.	1.3	4
148	Dilute solution properties of naphthalene-labelled acrylamide/N,N-dimethyl maleimido propyl ammonium propane sulphonate copolymer. Polymer International, 1998, 46, 131-137.	1.6	4
149	Permselectivities of aromatic polyamide membranes for aqueous alcohol mixtures in pervaporation. Journal of Polymer Research, 1998, 5, 31-36.	1.2	4
150	Self-Scrubbing of Waste Gas Containing Dioctyl Phthalate. Journal of the Air and Waste Management Association, 1998, 48, 359-365.	0.9	4
151	Radical polymerization of new functional monomer: Methacryloyl isocyanate containing 4-chloro-1-phenol. Journal of Polymer Science Part A, 2000, 38, 469-473.	2.5	4
152	Synthesis and Characterization of New Highly Soluble Polyamides Derived from α, α'-Bis[3,5-dimethyl-4-(4-aminophenoxy)phenyl]-1,4-Diisopropylbenzene. Polymer Journal, 2002, 34, 307-312.	1.3	4
153	Photophysical and aqueous solution properties of thermosensitive anionic potassium-2-sulfopropylmethacrylate/N-isopropylacrylamide/1-pyrenemethylmethacrylate terpolymer. Polymer, 2002, 43, 6221-6229.	1.8	4
154	Syntheses of Novel Polynorbornene Derivatives via Ring Opening Metathesis Polymerization. Macromolecular Symposia, 2006, 245-246, 68-76.	0.4	4
155	Polymerization of Vinyl Monomers Initiated By Poly[3-Dimethyl(Acryloyloxyethyl)-Ammonium Propane Sulfonate In Aqueous Solution. Journal of Macromolecular Science Part A, Chemistry, 1990, 27, 875-895.	0.4	3
156	Polymerization of vinyl monomers initiated by zwitterionic polymer in aqueous solution. Polymer International, 1993, 30, 381-386.	1.6	3
157	Effects of Gamma Radiation on Various Polyimides. Journal of the Chinese Chemical Society, 2000, 47, 583-588.	0.8	3
158	Synthesis and Characterization of Highly Soluble Polyamide-Imides Derived from α,α′-Bis[3,5-Dimethyl-4-(4-Trimellitimidophenoxy)-Phenyl]-1,4-Diisopropylbenzene. High Performance Polymers, 2001, 13, S257-S264.	0.8	3
159	Partitioning of unsaturated hydrophilic monomer in microemulsion media monitored by pyrene fluorescence method. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 571-581.	2.4	3
160	Synthesis and properties of new polyamides derived from 2,2-bis[4-[2-(4-aminophenoxy)ethoxy]phenyl]sulfone by direct polycondensation. Polymers for Advanced Technologies, 1999, 10, 329-335.	1.6	2
161	Dilute solution properties of naphthalene-labeled cationic poly(dimethyl sulfate quaternized) Tj ETQq1 1 0.784314	1 rgBT /Ov	erlock 10 T
162	Interaction of naphthalene-labeled poly(hydrochloride quaternized 2-norbornene-5-methyleneamine) with O/W microemulsion droplets. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 101-114.	2.4	1

#	Article	lF	CITATIONS
163	Pervaporation separation of aqueous alcohol solution through the membrane ofo-trimethylsilylphenylacetylene initiated by a tungsten carbene complex. Journal of Applied Polymer Science, 1999, 74, 647-654.	1.3	O