
Yuri A Gubarev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Localization of porphyrins and their metal complexes in albumin and its effect on protein aggregation and denaturation. Journal of Molecular Structure, 2022, 1254, 132304.	3.6	1
2	Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation. Inorganics, 2022, 10, 63.	2.7	4
3	Interaction of 5-[4â€2-(N-Methyl-1,3-benzimidazol-2-yl)phenyl]-10,15,20-tri-(N-methyl-3â€2-pyridyl)porphyrin Triiodide with SARS-CoV-2 Spike Protein. Russian Journal of General Chemistry, 2022, 92, 1005-1010.	0.8	1
4	Molecular mechanisms causing albumin aggregation. The main role of the porphyrins of the blood group. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118975.	3.9	4
5	Modeling the binding of protoporphyrin IX, verteporfin, and chlorin e6 to SARS-CoV-2 proteins. Chemistry of Heterocyclic Compounds, 2021, 57, 423-431.	1.2	7
6	Synthesis of Hetaryl-Substituted Asymmetric Porphyrins and Their Affinity to SARS-CoV-2 Helicase. Russian Journal of General Chemistry, 2021, 91, 1039-1049.	0.8	4
7	Destruction of Chitosan and Its Complexes with Cobalt(II) and Copper(II) Tetrasulphophthalocyanines. Polymers, 2021, 13, 2781.	4.5	3
8	Pyrolysis of Complexes of Metallosulphophthalocyanines with Chitosan for Obtaining Graphite-Like Structures. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3991-4000.	3.7	2
9	Possible therapeutic targets and promising drugs based on unsymmetrical hetaryl-substituted porphyrins to combat SARS-CoV-2. Journal of Pharmaceutical Analysis, 2021, 11, 691-698.	5.3	8
10	A study of protein aggregation activators in molecular complexes of cationic porphyrins and chlorin with BSA. Journal of Molecular Liquids, 2021, 338, 116632.	4.9	4
11	Theoretical and experimental study of interaction of macroheterocyclic compounds with ORF3a of SARS-CoV-2. Scientific Reports, 2021, 11, 19481.	3.3	12
12	Aggregation of protein complexes with porphyrins under light irradiation. Journal of Porphyrins and Phthalocyanines, 2021, 25, 145-152.	0.8	1
13	The Application of Porphyrins and Their Analogues for Inactivation of Viruses. Molecules, 2020, 25, 4368.	3.8	44
14	Effect of albumin on the aggregation of deuteroporphyrin in aqueous organic medium. Mendeleev Communications, 2020, 30, 805-808.	1.6	3
15	Method for Producing Graphite-Like Chitosan Structures by Thermolysis and Microwave Irradiation. Russian Journal of General Chemistry, 2020, 90, 2152-2155.	0.8	0
16	Albumin aggregation promoted by protoporphyrin in vitro. Mendeleev Communications, 2020, 30, 211-213.	1.6	6
17	Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles, 2020, 13, 311-467.	0.5	91
18	Thermochemical research of chitosan complexes with sulfonated metallophthalocyanines. International Journal of Biological Macromolecules, 2019, 137, 1153-1160.	7.5	6

Yuri A Gubarev

#	Article	IF	CITATIONS
19	Effect of macrocyclic compounds to protein aggregation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 95, 199-206.	1.6	1
20	Complexing Ability of Heterocyclic N-Oxides Toward Proton Donor Compounds. Russian Journal of General Chemistry, 2019, 89, 1409-1414.	0.8	0
21	Comparison of the complexing ability of zinc (II) porphyrins to diamines. Journal of Molecular Liquids, 2019, 288, 111024.	4.9	1
22	Effect of pH on Albumin Binding with Hydrophobic Porphyrins. Russian Journal of General Chemistry, 2019, 89, 565-569.	0.8	1
23	The Condition of Metal Complexes of Tetraanthraquinoneporphyrazines in Solutions. Russian Journal of General Chemistry, 2019, 89, 619-625.	0.8	Ο
24	Spectral and thermochemical research of the DNA polyplex with chitosan formation process and the influence of anionic and cationic compounds. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 153-157.	3.9	4
25	The interaction of 5,10,15,20-tetrakis [4- (2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl) phenyl] porphine with biopolymers. Dyes and Pigments, 2019, 162, 266-271.	3.7	10
26	Photoisomerization of Styryl Derivatives of Pyridine N-Oxide. Russian Journal of Physical Chemistry A, 2018, 92, 804-808.	0.6	2
27	Effect of irradiation spectral range on porphyrin—Protein complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 299-305.	3.9	18
28	Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 235-241.	3.9	18
29	Acrylamide polymers with covalently linked zinc(ii)tetraphenylporphyrin groups: synthesis and complexation with amino acids. Mendeleev Communications, 2018, 28, 158-160.	1.6	3
30	Thermochemical Insights into Fullerene Aggregation and the Phthalocyanine–Fullerene Interaction in Efficient Solvents. ChemPhysChem, 2018, 19, 284-290.	2.1	3
31	Features of interaction of tetraiodide meso-tetra(N-methyl-3-pyridyl)porphyrin with bovine serum albumin. Journal of Molecular Liquids, 2018, 265, 664-667.	4.9	17
32	The interaction of cationic and anionic porphyrins with the bovine serum albumin in borate buffer. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 88, 191-198.	1.6	6
33	Thermochemical study of the trans- and cis-isomeric forms of 4-(4-methoxystyryl)pyridine N-oxide. Russian Journal of General Chemistry, 2017, 87, 619-623.	0.8	1
34	A pH-controllable protein container for the delivery of hydrophobic porphyrins. Mendeleev Communications, 2017, 27, 47-49.	1.6	7
35	A new strategy for targeted delivery of non-water-soluble porphyrins in chitosan-albumin capsules. Colloid and Polymer Science, 2017, 295, 2173-2182.	2.1	9
36	Features of Ñhitosan interaction with copper(II) and cobalt(II) tetrasulfophthalocyanines. Russian Journal of General Chemistry, 2017, 87, 2327-2331.	0.8	5

Yuri A Gubarev

#	Article	IF	CITATIONS
37	Thermodynamic Aspects of Binding Proteins with Porphyrins. Spectral and Thermochemical Approaches. Macroheterocycles, 2017, 10, 37-42.	0.5	3
38	Spectral and hydrodynamic studies of complex formation of tetraalkoxy substituted zinc(II)phthalocyanines with defatted and nondefatted bovine serum albumin. Biochip Journal, 2016, 10, 1-8.	4.9	4
39	Zinc tetra-4-(4'-carboxyphenoxy)phthalocyanine as a new site-specific marker for serum albumin. Russian Journal of Bioorganic Chemistry, 2016, 42, 29-35.	1.0	4
40	Thermodynamic aspects of interaction zinc(II)tetraphenylporphyrin with bidentate ligands in dilute solutions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 84, 71-77.	1.6	6
41	Interaction between albumin and zinc tetra-4-[(4' -carboxy)phenylamino]phthalocyanine. Mendeleev Communications, 2015, 25, 307-309.	1.6	12
42	Development and certification of an automated differential titration photocalorimeter. Russian Journal of Physical Chemistry A, 2015, 89, 724-728.	0.6	4
43	Investigation of interaction between alkoxy substituted phthalocyanines with different lengths of alkyl residue and bovine serum albumin. Journal of Luminescence, 2015, 166, 71-76.	3.1	8
44	Thermo-oxidative degradation of styryl derivatives of pyridine-N-oxides. Russian Journal of General Chemistry, 2014, 84, 2107-2113.	0.8	1
45	Formation of bovine serum albumin associates with zinc tetra(4,4′-carboxy)phenylamino- and tetra-(4,4′-carboxy)phenoxy phthalocyanines in aqueous-organic solutions at 298 K. Russian Journal of Physical Chemistry A, 2013, 87, 2030-2033.	0.6	8
46	Thermodynamical Approach for Choosing the Carrier System for Tetraantraquinoporphyrazines. International Journal of Organic Chemistry, 2013, 03, 225-228.	0.7	2
47	Determination of Stability of Molecular Complexes of Zinc(II) meso-Tetraphenylporphyrin with Heterocyclic N-Oxide and Pyridine by Different Methods. Macroheterocycles, 2013, 6, 106-110.	0.5	8
48	Influence of complex formation with tetraantraquinoporphyrazines and tetrasulphophthalocyanine on thermal stability of bovine serum albumin. Journal of Porphyrins and Phthalocyanines, 2011, 15, 223-229.	0.8	7
49	Photoinduced isomerization of 4-(4′-dimethylaminostyryl) pyridine N-oxide. Journal of Structural Chemistry, 2009, 50, 722-726.	1.0	1
50	Thermal behavior of quinoline N-oxide hydrates and deuterohydrate. Russian Journal of General Chemistry, 2009, 79, 1183-1190.	0.8	3
51	Thermal oxidative destruction of complexes of heterocyclic N-oxides with Zn(II)tetra-phenylporphyrin. Journal of Thermal Analysis and Calorimetry, 2008, 91, 601-608.	3.6	5
52	Thermooxidative decomposition of heterocyclic N-oxides. Russian Journal of General Chemistry, 2007, 77, 1093-1099.	0.8	7
53	Prospects for the use of macrocyclic photosensitizers for inactivation of SARS-CoV-2: selection of compounds leaders based on the molecular docking data. Journal of Biomolecular Structure and Dynamics, 0, , 1-10.	3.5	1