
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555203/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                  | IF            | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 1  | Structural Asymmetry of Metallic Single-Atom Contacts Detected by Current–Voltage<br>Characteristics. ACS Applied Materials & Interfaces, 2022, 14, 11919-11926.                                                                                                         | 4.0           | 4         |
| 2  | Scanning probe microscopy study of functionalized nanographene. , 2022, 1, 79-88.                                                                                                                                                                                        |               | 0         |
| 3  | Single-molecule determination of chemical equilibrium of DNA intercalation by electrical conductance. Chemical Communications, 2021, 57, 4380-4383.                                                                                                                      | 2.2           | 0         |
| 4  | Electronic Structure and Transport Properties of Single-Molecule Junctions with Different Sizes of<br>Ï€-Conjugated System. Journal of Physical Chemistry C, 2021, 125, 3472-3479.                                                                                       | 1.5           | 6         |
| 5  | Single-molecule Electric Switching Induced by Acid-Base Reaction. Chemistry Letters, 2021, 50, 1271-1273.                                                                                                                                                                | 0.7           | 1         |
| 6  | Organometallic Molecular Wires with Thioacetylene Backbones,<br><i>trans</i> â€{RSâ€{C≡C) <sub><i>n</i></sub> } <sub>2</sub> Ru(phosphine) <sub>4</sub> : High Conductar<br>through Nonâ€Aromatic Bridging Linkers. Chemistry - A European Journal, 2021, 27, 9666-9673. | 1C <b>£.7</b> | 4         |
| 7  | Water Splitting Induced by Visible Light at a Copperâ€Based Singleâ€Molecule Junction. Small, 2021, 17, e2008109.                                                                                                                                                        | 5.2           | 3         |
| 8  | Water Splitting: Water Splitting Induced by Visible Light at a Copperâ€Based Singleâ€Molecule Junction<br>(Small 28/2021). Small, 2021, 17, 2170143.                                                                                                                     | 5.2           | 0         |
| 9  | Single-molecule junction spontaneously restored by DNA zipper. Nature Communications, 2021, 12, 5762.                                                                                                                                                                    | 5.8           | 7         |
| 10 | A single-molecule conductance study on the rotational isomers of a hexaarylbenzene derivative carrying dipolar rotating units. Japanese Journal of Applied Physics, 2021, 60, 108002.                                                                                    | 0.8           | 0         |
| 11 | Elementary processes of DNA surface hybridization resolved by single-molecule kinetics: implication for macroscopic device performance. Chemical Science, 2021, 12, 2217-2224.                                                                                           | 3.7           | 5         |
| 12 | Control of dominant conduction orbitals by peripheral substituents in paddle-wheel diruthenium alkynyl molecular junctions. Chemical Science, 2021, 12, 10871-10877.                                                                                                     | 3.7           | 9         |
| 13 | Single-molecule junctions of multinuclear organometallic wires: long-range carrier transport<br>brought about by metal–metal interaction. Chemical Science, 2021, 12, 4338-4344.                                                                                         | 3.7           | 21        |
| 14 | Visualization of Thermal Transport Properties of Self-Assembled Monolayers on Au(111) by Contact<br>and Noncontact Scanning Thermal Microscopy. Journal of the American Chemical Society, 2021, 143,<br>18777-18783.                                                     | 6.6           | 4         |
| 15 | Structure and Electron Transport at Metal Atomic Junctions Doped with Dichloroethylene.<br>ChemPhysChem, 2020, 21, 175-180.                                                                                                                                              | 1.0           | 3         |
| 16 | Single-Molecule Junction of a Cationic Rh(III) Polyyne Molecular Wire. Inorganic Chemistry, 2020, 59, 13254-13261.                                                                                                                                                       | 1.9           | 11        |
| 17 | The practical electromagnetic effect in surface-enhanced Raman scattering observed by the lithographically fabricated gold nanosquare dimers. AIP Advances, 2020, 10, .                                                                                                  | 0.6           | 10        |
| 18 | Structure and Electron Transport at Metal Atomic Junctions Doped with Dichloroethylene.<br>ChemPhysChem, 2020, 21, 274-274.                                                                                                                                              | 1.0           | 0         |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Selective formation of molecular junctions with high and low conductance states by tuning the velocity of electrode displacement. Physical Chemistry Chemical Physics, 2020, 22, 4544-4548.                              | 1.3 | 2         |
| 20 | Hybrid Molecular Junctions Using Au–S and Auâ~Ï€ Bindings. Journal of Physical Chemistry C, 2020, 124,<br>9261-9268.                                                                                                     | 1.5 | 7         |
| 21 | Investigation of Ag and Cu Filament Formation Inside the Metal Sulfide Layer of an Atomic Switch<br>Based on Point-Contact Spectroscopy. ACS Applied Materials & Interfaces, 2019, 11, 27178-27182.                      | 4.0 | 9         |
| 22 | Electric-Field-Controllable Conductance Switching of an Overcrowded Ethylene Self-Assembled Monolayer. Journal of the American Chemical Society, 2019, 141, 18544-18550.                                                 | 6.6 | 17        |
| 23 | Tuneable single-molecule electronic conductance of C <sub>60</sub> by encapsulation. Physical Chemistry Chemical Physics, 2019, 21, 12606-12610.                                                                         | 1.3 | 14        |
| 24 | Effect of Bias Voltage on a Single-Molecule Junction Investigated by Surface-Enhanced Raman<br>Scattering. Journal of Physical Chemistry C, 2019, 123, 15267-15272.                                                      | 1.5 | 6         |
| 25 | Identifying the molecular adsorption site of a single molecule junction through combined Raman and conductance studies. Chemical Science, 2019, 10, 6261-6269.                                                           | 3.7 | 32        |
| 26 | Stretch dependent electronic structure and vibrational energy of the bipyridine single molecule junction. Physical Chemistry Chemical Physics, 2019, 21, 16910-16913.                                                    | 1.3 | 7         |
| 27 | Control of molecular orientation in a single-molecule junction with a tripodal triptycene anchoring<br>unit: toward a simple and facile single-molecule diode. Japanese Journal of Applied Physics, 2019, 58,<br>035003. | 0.8 | 8         |
| 28 | Triptycene Tripods for the Formation of Highly Uniform and Densely Packed Self-Assembled<br>Monolayers with Controlled Molecular Orientation. Journal of the American Chemical Society, 2019,<br>141, 5995-6005.         | 6.6 | 48        |
| 29 | Investigation on the formation process of metal atomic filament for metal sulfide atomic switches by electrical measurement. Nanotechnology, 2019, 30, 125202.                                                           | 1.3 | 6         |
| 30 | Surface enhanced Raman scattering on molecule junction. Applied Materials Today, 2019, 14, 76-83.                                                                                                                        | 2.3 | 10        |
| 31 | Formation of a Chain-like Water Single Molecule Junction with Pd Electrodes. Journal of Physical Chemistry C, 2018, 122, 4698-4703.                                                                                      | 1.5 | 4         |
| 32 | Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by<br>Current versus Bias Voltage Characteristics. Journal of the American Chemical Society, 2018, 140,<br>3760-3767.        | 6.6 | 42        |
| 33 | Impact of junction formation processes on single molecular conductance. Physical Chemistry Chemical Physics, 2018, 20, 7947-7952.                                                                                        | 1.3 | 11        |
| 34 | Single-molecule junction of an overcrowded ethylene with binary conductance states. Japanese<br>Journal of Applied Physics, 2018, 57, 03EG05.                                                                            | 0.8 | 6         |
| 35 | Ruthenium Trisâ€bipyridine Singleâ€Molecule Junctions with Multiple Joint Configurations. Chemistry - an Asian Journal, 2018, 13, 1297-1301.                                                                             | 1.7 | 6         |
| 36 | Single-molecule junctions of π molecules. Materials Chemistry Frontiers, 2018, 2, 214-218.                                                                                                                               | 3.2 | 13        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Controlling stacking order and charge transport in π-stacks of aromatic molecules based on surface<br>assembly. Chemical Communications, 2018, 54, 12443-12446.                                                                              | 2.2 | 20        |
| 38 | Dependence of Stretch Length on Electrical Conductance and Electronic Structure of the<br>Benzenedithiol Single Molecular Junction. E-Journal of Surface Science and Nanotechnology, 2018, 16,<br>145-149.                                   | 0.1 | 2         |
| 39 | "Doping―of Polyyne with an Organometallic Fragment Leads to Highly Conductive Metallapolyyne<br>Molecular Wire. Journal of the American Chemical Society, 2018, 140, 10080-10084.                                                            | 6.6 | 78        |
| 40 | Electronic Properties of Single Atom and Molecule Junctions. ChemElectroChem, 2018, 5, 2508-2517.                                                                                                                                            | 1.7 | 5         |
| 41 | Electronic Properties of Singleâ€Atom and â€Molecule Junctions. ChemElectroChem, 2018, 5, 2507-2507.                                                                                                                                         | 1.7 | Ο         |
| 42 | Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics.<br>Micromachines, 2018, 9, 67.                                                                                                                          | 1.4 | 17        |
| 43 | Photochemical Reaction Using Aminobenzenethiol Single Molecular Junction. E-Journal of Surface<br>Science and Nanotechnology, 2018, 16, 137-141.                                                                                             | 0.1 | 2         |
| 44 | Atomic structure of water/Au, Ag, Cu and Pt atomic junctions. Physical Chemistry Chemical Physics, 2017, 19, 4673-4677.                                                                                                                      | 1.3 | 8         |
| 45 | Evaluation of the Electronic Structure of Singleâ€Molecule Junctions Based on Current–Voltage and<br>Thermopower Measurements: Application to C <sub>60</sub> Singleâ€Molecule Junction. Chemistry - an<br>Asian Journal, 2017, 12, 440-445. | 1.7 | 19        |
| 46 | Single Molecular Junction Study on H <sub>2</sub> O@C <sub>60</sub> : H <sub>2</sub> O is<br>"Electrostatically Isolatedâ€: ChemPhysChem, 2017, 18, 1229-1233.                                                                               | 1.0 | 14        |
| 47 | Chemically induced topological zero mode at graphene armchair edges. Physical Chemistry Chemical Physics, 2017, 19, 5145-5154.                                                                                                               | 1.3 | 12        |
| 48 | <i>In situ</i> observation of the formation process for free-standing Au nanowires with a scanning electron microscope. Nanotechnology, 2017, 28, 105707.                                                                                    | 1.3 | 2         |
| 49 | Statistical I – V measurements of single-molecule junctions with an asymmetric anchoring group<br>1,4-aminobenzenethiol. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8,<br>025007.                                   | 0.7 | 4         |
| 50 | Triphosphasumanene Trisulfide: High Out-of-Plane Anisotropy and Janus-Type π-Surfaces. Journal of the American Chemical Society, 2017, 139, 5787-5792.                                                                                       | 6.6 | 75        |
| 51 | Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal–molecule interaction. Physical Chemistry Chemical Physics, 2017, 19, 9843-9848.                            | 1.3 | 10        |
| 52 | Mechanical control of the plasmon coupling with Au nanoparticle arrays fixed on the elastomeric film via chemical bond. Japanese Journal of Applied Physics, 2017, 56, 035201.                                                               | 0.8 | 6         |
| 53 | Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions. Scientific Reports, 2017, 7, 7949.                                                                                     | 1.6 | 12        |
| 54 | Single-molecule conductance of DNA gated and ungated by DNA-binding molecules. Chemical<br>Communications, 2017, 53, 10378-10381.                                                                                                            | 2.2 | 15        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Highly-conducting molecular circuits based on antiaromaticity. Nature Communications, 2017, 8, 15984.                                                                                            | 5.8 | 111       |
| 56 | Governing the Metal–Molecule Interface: Towards New Functionality in Single-Molecule Junctions.<br>Bulletin of the Chemical Society of Japan, 2017, 90, 1-11.                                    | 2.0 | 26        |
| 57 | Gap width-independent spectra in 4-aminothiophenol surface enhanced Raman scattering stimulated in<br>Au-gap array. Japanese Journal of Applied Physics, 2017, 56, 065202.                       | 0.8 | 3         |
| 58 | Surface-Enhanced Raman Scattering in Molecular Junctions. Sensors, 2017, 17, 1901.                                                                                                               | 2.1 | 10        |
| 59 | Molecular Diode Studies Based on a Highly Sensitive Molecular Measurement Technique. Sensors,<br>2017, 17, 956.                                                                                  | 2.1 | 14        |
| 60 | Evaluation of the energy barrier for failure of Au atomic contact based on temperature dependent<br>current–voltage characteristics. Physical Chemistry Chemical Physics, 2016, 18, 21586-21589. | 1.3 | 4         |
| 61 | Resolving metal-molecule interfaces at single-molecule junctions. Scientific Reports, 2016, 6, 26606.                                                                                            | 1.6 | 55        |
| 62 | Surface enhanced Raman scattering of single 1,4-Benzenedithiol molecular junction. International<br>Journal of Modern Physics B, 2016, 30, 1642010.                                              | 1.0 | 2         |
| 63 | Single Tripyridyl–Triazine Molecular Junction with Multiple Binding Sites. Journal of Physical<br>Chemistry C, 2016, 120, 8936-8940.                                                             | 1.5 | 14        |
| 64 | Electrical Conductance of a Single 1,2-Ethanedithiol Molecular Junction Prepared in Ultrahigh<br>Vacuum. Chemistry Letters, 2016, 45, 804-806.                                                   | 0.7 | 0         |
| 65 | Single-molecule junctions for molecular electronics. Journal of Materials Chemistry C, 2016, 4, 8842-8858.                                                                                       | 2.7 | 88        |
| 66 | Bowl Inversion and Electronic Switching of Buckybowls on Gold. Journal of the American Chemical Society, 2016, 138, 12142-12149.                                                                 | 6.6 | 44        |
| 67 | Effect of Ag Ion Insertion on Electron Transport through Au Ion Wires. Chemistry Letters, 2016, 45, 764-766.                                                                                     | 0.7 | 5         |
| 68 | Data mining graphene: correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects. Nanotechnology, 2016, 27, 495703.                                | 1.3 | 18        |
| 69 | Atomic and Electronic Structures of a Single Oxygen Molecular Junction with Au, Ag, and Cu<br>Electrodes. Journal of Physical Chemistry C, 2016, 120, 16254-16258.                               | 1.5 | 11        |
| 70 | Determination of the number of atoms present in nano contact based on shot noise measurements with highly stable nano-fabricated electrodes. Nanotechnology, 2016, 27, 295203.                   | 1.3 | 2         |
| 71 | Characterization of the Single Molecular Junction. , 2016, , 61-85.                                                                                                                              |     | 3         |
| 72 | Scanning tunnelling microscopy analysis of octameric o-phenylenes on Au(111). RSC Advances, 2016, 6, 55970-55975.                                                                                | 1.7 | 1         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Organometallic molecular wires as versatile modules for energy-level alignment of the<br>metal–molecule–metal junction. Chemical Communications, 2016, 52, 5796-5799.                       | 2.2 | 45        |
| 74 | Effect of the Molecule–Metal Interface on the Surface-Enhanced Raman Scattering of<br>1,4-Benzenedithiol. Journal of Physical Chemistry C, 2016, 120, 1038-1042.                            | 1.5 | 26        |
| 75 | Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics. Journal of the American Chemical Society, 2016, 138, 1294-1300.                                   | 6.6 | 88        |
| 76 | Adsorption Site Recognition in Single Molecular Junctions Spectroscopy. Hyomen Kagaku, 2016, 37,<br>288-293.                                                                                | 0.0 | 0         |
| 77 | Extension of Photopolymerization Region from the Nanoscale to the Macroscopic Scale Using a Chemically Amplified Photoresist. Bulletin of the Chemical Society of Japan, 2015, 88, 277-282. | 2.0 | 0         |
| 78 | Concise Synthesis and Facile Nanotube Assembly of a Symmetrically Multifunctionalized<br>Cycloparaphenylene. Chemistry - A European Journal, 2015, 21, 18900-18904.                         | 1.7 | 46        |
| 79 | Frontispiece: Concise Synthesis and Facile Nanotube Assembly of a Symmetrically Multifunctionalized<br>Cycloparaphenylene. Chemistry - A European Journal, 2015, 21, .                      | 1.7 | 0         |
| 80 | High electronic couplings of single mesitylene molecular junctions. Beilstein Journal of Nanotechnology, 2015, 6, 2431-2437.                                                                | 1.5 | 10        |
| 81 | Self-Assembly of Nanometer-Sized Boroxine Cages from Diboronic Acids. Journal of the American<br>Chemical Society, 2015, 137, 7015-7018.                                                    | 6.6 | 86        |
| 82 | Electrical conductance and structure of copper atomic junctions in the presence of water molecules.<br>Physical Chemistry Chemical Physics, 2015, 17, 32436-32442.                          | 1.3 | 10        |
| 83 | Temperature dependence of the thermopower and its variation of the Au atomic contact.<br>Nanotechnology, 2015, 26, 045709.                                                                  | 1.3 | 4         |
| 84 | Photochromic reaction of the diarylethene derivative on Au nanoparticles. Advances in Natural<br>Sciences: Nanoscience and Nanotechnology, 2015, 6, 015006.                                 | 0.7 | 1         |
| 85 | Symmetry of Single Hydrogen Molecular Junction with Au, Ag, and Cu Electrodes. Journal of Physical Chemistry C, 2015, 119, 19143-19148.                                                     | 1.5 | 25        |
| 86 | Rectifying Electron-Transport Properties through Stacks of Aromatic Molecules Inserted into a Self-Assembled Cage. Journal of the American Chemical Society, 2015, 137, 5939-5947.          | 6.6 | 126       |
| 87 | Single naphthalene and anthracene molecular junctions using Ag and Cu electrodes in ultra high<br>vacuum. Applied Surface Science, 2015, 354, 362-366.                                      | 3.1 | 2         |
| 88 | Highly conductive single naphthalene and anthracene molecular junction with well-defined conductance. Applied Physics Letters, 2015, 106, .                                                 | 1.5 | 16        |
| 89 | Effect of Mechanical Strain on Electric Conductance of Molecular Junctions. Journal of Physical Chemistry C, 2015, 119, 19452-19457.                                                        | 1.5 | 11        |
| 90 | Direct imaging of monovacancy-hydrogen complexes in a single graphitic layer. Physical Review B, 2014,<br>89, .                                                                             | 1.1 | 44        |

| #   | Article                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Highly stable Au atomic contacts covered with benzenedithiol under ambient conditions. Physical Chemistry Chemical Physics, 2014, 16, 15662.                                                                                                                                                                   | 1.3 | 10        |
| 92  | Role of edge geometry and chemistry in the electronic properties of graphene nanostructures.<br>Faraday Discussions, 2014, 173, 173-199.                                                                                                                                                                       | 1.6 | 58        |
| 93  | Fabrication of single linear aromatic molecular junction with high formation probability. Applied<br>Physics Express, 2014, 7, 105201.                                                                                                                                                                         | 1.1 | 7         |
| 94  | Additive Electron Pathway and Nonadditive Molecular Conductance by Using a Multipodal Bridging<br>Compound. Journal of Physical Chemistry C, 2014, 118, 5275-5283.                                                                                                                                             | 1.5 | 17        |
| 95  | Single Molecular Resistive Switch Obtained via Sliding Multiple Anchoring Points and Varying Effective Wire Length. Journal of the American Chemical Society, 2014, 136, 7327-7332.                                                                                                                            | 6.6 | 101       |
| 96  | Electronic State of Oxidized Nanographene Edge with Atomically Sharp Zigzag Boundaries. ACS Nano, 2013, 7, 6868-6874.                                                                                                                                                                                          | 7.3 | 24        |
| 97  | Single Molecular Bridging of Au Nanogap Using Aryl Halide Molecules. Journal of Physical Chemistry<br>C, 2013, 117, 24277-24282.                                                                                                                                                                               | 1.5 | 27        |
| 98  | Rearrangement of π-Electron Network and Switching of Edge-Localized π State in Reduced Graphene<br>Oxide. ACS Nano, 2013, 7, 11190-11199.                                                                                                                                                                      | 7.3 | 18        |
| 99  | Nanographene and Graphene Edges: Electronic Structure and Nanofabrication. Accounts of Chemical Research, 2013, 46, 2202-2210.                                                                                                                                                                                 | 7.6 | 134       |
| 100 | Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Physical Review B, 2013, 87, .                                                                                                                                                           | 1.1 | 41        |
| 101 | Clar's Aromatic Sextet and Ï€â€Electron Distribution in Nanographene. Angewandte Chemie -<br>International Edition, 2012, 51, 7236-7241.                                                                                                                                                                       | 7.2 | 34        |
| 102 | Zigzag and armchair edges in graphene. Carbon, 2012, 50, 3141-3145.                                                                                                                                                                                                                                            | 5.4 | 119       |
| 103 | Cutting of Oxidized Graphene into Nanosized Pieces. Journal of the American Chemical Society, 2010, 132, 10034-10041.                                                                                                                                                                                          | 6.6 | 150       |
| 104 | Reproducible Single-molecule Conductance Measurements of 1,4-Benzenedithiol with Break Junction Methods by Diluting It in a Thin Insulating Monolayer. Chemistry Letters, 2008, 37, 408-409.                                                                                                                   | 0.7 | 5         |
| 105 | Atomic contrast on a point defect on CaF2(111) imaged by non-contact atomic force microscopy.<br>Nanotechnology, 2007, 18, 084011.                                                                                                                                                                             | 1.3 | 6         |
| 106 | Accurate determination of multiple sets of single molecular conductance of Au/1,6-hexanedithiol/Au<br>break junctions by ultra-high vacuum-scanning tunneling microscope and analyses of individual<br>current–separation curves. Nanotechnology, 2007, 18, 424005.                                            | 1.3 | 25        |
| 107 | Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: Effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold. Physical Chemistry Chemical Physics, 2006. 8. 3876. | 1.3 | 76        |
| 108 | Measurements of Currents through Single Molecules of Alkanedithiols by Repeated Formation of<br>Break Junction in Scanning Tunneling Microscopy under Ultrahigh Vacuum. Japanese Journal of<br>Applied Physics, 2006, 45, 2041-2044.                                                                           | 0.8 | 35        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Imaging Defects on CaF2(111) Surface with Frequency Modulation Atomic Force Microscopy. Japanese<br>Journal of Applied Physics, 2006, 45, 1986-1991.                                                                                                                                                                                                                                    | 0.8 | 6         |
| 110 | Effect of Molecule–Electrode Contacts on Single-Molecule Conductivity of π-Conjugated System<br>Measured by Scanning Tunneling Microscopy under Ultrahigh Vacuum. Japanese Journal of Applied<br>Physics, 2006, 45, 2037-2040.                                                                                                                                                          | 0.8 | 21        |
| 111 | Length Dependence of Tunneling Current Through Single Phenylene Oligomers Measured by Scanning<br>Tunneling Microscopy at Low Temperature. Japanese Journal of Applied Physics, 2006, 45, 2736-2742.                                                                                                                                                                                    | 0.8 | 10        |
| 112 | Differentiation of molecules in a mixed self-assembled monolayer of H-and Cl-terminated bicyclo[2.2.2]octane derivatives. Nanotechnology, 2006, 17, S112-S120.                                                                                                                                                                                                                          | 1.3 | 12        |
| 113 | Self-assembled nanostructure of Au nanoparticles on a self-assembled monolayer. Ultramicroscopy, 2005, 105, 26-31.                                                                                                                                                                                                                                                                      | 0.8 | 16        |
| 114 | Electronic Conduction through Single Molecule of New π-Conjugated System Measured by Scanning<br>Tunneling Microscopy. Japanese Journal of Applied Physics, 2005, 44, 5382-5385.                                                                                                                                                                                                        | 0.8 | 8         |
| 115 | The dynamic behaviour of a single molecule inserted in a self-assembled monolayer matrix at low temperature. Nanotechnology, 2004, 15, S137-S141.                                                                                                                                                                                                                                       | 1.3 | 12        |
| 116 | Noncontact atomic force microscopy of a mixed self-assembled monolayer of thiolates with an H- or a Cl-terminated bicyclo[2.2.2]octane moiety on Au(111). Nanotechnology, 2004, 15, S19-S23.                                                                                                                                                                                            | 1.3 | 8         |
| 117 | Molecular dynamics simulation of non-contact atomic force microscopy of self-assembled monolayers on Au(111). Nanotechnology, 2004, 15, 710-715.                                                                                                                                                                                                                                        | 1.3 | 21        |
| 118 | Self-assembly of thiolates with alicyclic moieties on Au(111). Nanotechnology, 2004, 15, S150-S153.                                                                                                                                                                                                                                                                                     | 1.3 | 16        |
| 119 | A self-assembled monolayer of a disulfide with a pair of bicyclo[2.2.2]octane moieties on Au(1 1 1) investigated by non-contact atomic force microscopy. Applied Surface Science, 2003, 210, 79-83.                                                                                                                                                                                     | 3.1 | 5         |
| 120 | Dependence of tunneling current through a single molecule of phenylene oligomers on the molecular length. Ultramicroscopy, 2003, 97, 19-26.                                                                                                                                                                                                                                             | 0.8 | 31        |
| 121 | Tunneling Currents through a Single Molecule Isolated in a New Matrix. AIP Conference Proceedings, 2003, , .                                                                                                                                                                                                                                                                            | 0.3 | 0         |
| 122 | Motions of single molecules inserted in a self-assembled monolayer matrix of a bicyclo[2.2.2]octane derivative on Au(111). Nanotechnology, 2003, 14, 258-263.                                                                                                                                                                                                                           | 1.3 | 19        |
| 123 | Geometry for Self-Assembling of Spherical Hydrocarbon Cages with Methane Thiolates on Au(111).<br>Journal of the American Chemical Society, 2002, 124, 13629-13635.                                                                                                                                                                                                                     | 6.6 | 53        |
| 124 | Novel self-assembled monolayers of disulfides with bicyclo[2.2.2]octane moieties on Au(111). Chemical Communications, 2001, , 1688-1689.                                                                                                                                                                                                                                                | 2.2 | 23        |
| 125 | An Allyltitanium Derived from Acrolein 1,2-Dicyclohexylethylene Acetal and (η2-propene)Ti(O-i-Pr)2as a<br>Chiral Propionaldehyde Homoenolate Equivalent that Reacts with Imines with Excellent<br>Stereoselectivity. An Efficient and Practical Access to Optically Active Î <sup>3</sup> -Amino Carbonyl Compounds.<br>Iournal of the American Chemical Society. 2001. 123. 3462-3471. | 6.6 | 37        |