Anath Shalev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thioredoxin-Interacting Protein Is Stimulated by Glucose through a Carbohydrate Response Element and Induces β-Cell Apoptosis. Endocrinology, 2005, 146, 2397-2405.	2.8	334
2	Thioredoxin-Interacting Protein. Diabetes, 2008, 57, 938-944.	0.6	295
3	Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nature Medicine, 2013, 19, 1141-1146.	30.7	240
4	Intracellular Shuttling and Mitochondrial Function of Thioredoxin-interacting Protein. Journal of Biological Chemistry, 2010, 285, 3997-4005.	3.4	239
5	Oligonucleotide Microarray Analysis of Intact Human Pancreatic Islets: Identification of Glucose-Responsive Genes and a Highly Regulated TGFβ Signaling Pathway. Endocrinology, 2002, 143, 3695-3698.	2.8	203
6	Thioredoxinâ€interacting protein deficiency induces Akt/Bclâ€xL signaling and pancreatic betaâ€cell mass and protects against diabetes. FASEB Journal, 2008, 22, 3581-3594.	0.5	194
7	Glucose-stimulated Expression of Txnip Is Mediated by Carbohydrate Response Element-binding Protein, p300, and Histone H4 Acetylation in Pancreatic Beta Cells. Journal of Biological Chemistry, 2009, 284, 16898-16905.	3.4	188
8	Preventing Î ² -Cell Loss and Diabetes With Calcium Channel Blockers. Diabetes, 2012, 61, 848-856.	0.6	183
9	Verapamil and beta cell function in adults with recent-onset type 1 diabetes. Nature Medicine, 2018, 24, 1108-1112.	30.7	149
10	Minireview: Thioredoxin-Interacting Protein: Regulation and Function in the Pancreatic β-Cell. Molecular Endocrinology, 2014, 28, 1211-1220.	3.7	146
11	Metformin Use Is Associated With Reduced Mortality in a Diverse Population With COVID-19 and Diabetes. Frontiers in Endocrinology, 2020, 11, 600439.	3.5	125
12	Lack of TXNIP Protects Against Mitochondria-Mediated Apoptosis but Not Against Fatty Acid–Induced ER Stress–Mediated β-Cell Death. Diabetes, 2010, 59, 440-447.	0.6	107
13	β-Cell MicroRNAs: Small but Powerful. Diabetes, 2015, 64, 3631-3644.	0.6	99
14	Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1133-E1139.	3.5	94
15	Exenatide inhibits β-cell apoptosis by decreasing thioredoxin-interacting protein. Biochemical and Biophysical Research Communications, 2006, 346, 1067-1074.	2.1	91
16	MicroRNA-200 Is Induced by Thioredoxin-interacting Protein and Regulates Zeb1 Protein Signaling and Beta Cell Apoptosis. Journal of Biological Chemistry, 2014, 289, 36275-36283.	3.4	86
17	Nitric Oxide–Dependent Suppression of Thioredoxin-Interacting Protein Expression Enhances Thioredoxin Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2666-2672.	2.4	72
18	FOXO1 Competes with Carbohydrate Response Element-binding Protein (ChREBP) and Inhibits Thioredoxin-interacting Protein (TXNIP) Transcription in Pancreatic Beta Cells. Journal of Biological Chemistry, 2013, 288, 23194-23202.	3.4	71

ANATH SHALEV

#	Article	IF	CITATIONS
19	Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 75-80.	2.3	70
20	miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function. Diabetes, 2018, 67, 256-264.	0.6	60
21	Identification of an Anti-diabetic, Orally Available Small Molecule that Regulates TXNIP Expression and Glucagon Action. Cell Metabolism, 2020, 32, 353-365.e8.	16.2	56
22	Thioredoxin-interacting Protein Promotes Islet Amyloid Polypeptide Expression through miR-124a and FoxA2. Journal of Biological Chemistry, 2014, 289, 11807-11815.	3.4	55
23	miR-204 Targets PERK and Regulates UPR Signaling and \hat{l}^2 -Cell Apoptosis. Molecular Endocrinology, 2016, 30, 917-924.	3.7	52
24	Gene expression profiling in INS-1 cells overexpressing thioredoxin-interacting protein. Biochemical and Biophysical Research Communications, 2005, 336, 770-778.	2.1	50
25	Cytokines Regulate β-Cell Thioredoxin-interacting Protein (TXNIP) via Distinct Mechanisms and Pathways. Journal of Biological Chemistry, 2016, 291, 8428-8439.	3.4	50
26	A Proinsulin Gene Splice Variant with Increased Translation Efficiency Is Expressed in Human Pancreatic Islets. Endocrinology, 2002, 143, 2541-2547.	2.8	49
27	Lack of TXNIP protects Î ² -cells against glucotoxicity. Biochemical Society Transactions, 2008, 36, 963-965.	3.4	41
28	Calcium channel blocker use is associated with lower fasting serum glucose among adults with diabetes from the REGARDS study. Diabetes Research and Clinical Practice, 2016, 115, 115-121.	2.8	40
29	Islet ChREBP-β is increased in diabetes and controls ChREBP-α and glucose-induced gene expression via a negative feedback loop. Molecular Metabolism, 2016, 5, 1208-1215.	6.5	34
30	Thioredoxin-Interacting Protein Stimulates Its Own Expression via a Positive Feedback Loop. Molecular Endocrinology, 2014, 28, 674-680.	3.7	33
31	Serum miR-204 is an early biomarker of type 1 diabetes-associated pancreatic beta-cell loss. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E723-E730.	3.5	33
32	Increased Insulin Translation from an Insulin Splice-Variant Overexpressed in Diabetes, Obesity, and Insulin Resistance. Molecular Endocrinology, 2005, 19, 794-803.	3.7	31
33	Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nature Communications, 2022, 13, 1159.	12.8	28
34	TXNIP regulates myocardial fatty acid oxidation via miR-33a signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H64-H75.	3.2	24
35	Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1579-1595.	2.4	23
36	Metabolism-Independent Sugar Effects on Gene Transcription: The Role of 3-O-Methylglucoseâ€. Biochemistry, 2006, 45, 11047-11051.	2.5	22

ANATH SHALEV

#	Article	IF	CITATIONS
37	Calcium Channel Blockers Act through Nuclear Factor Y to Control Transcription of Key Cardiac Genes. Molecular Pharmacology, 2012, 82, 541-549.	2.3	19
38	Resistin serum levels in type 1 diabetes pre- and post-islet transplantation. Metabolism: Clinical and Experimental, 2004, 53, 403-404.	3.4	18
39	Heterogeneity of Diabetes: Î ² -Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidnev Diseases. Diabetes Care. 2022. 45. 3-22.	8.6	14
40	A Small Molecule, UAB126, Reverses Diet-Induced Obesity and its Associated Metabolic Disorders. Diabetes, 2020, 69, 2003-2016.	0.6	10
41	Deletion of <i>Gdf15</i> Reduces ER Stress-induced Beta-cell Apoptosis and Diabetes. Endocrinology, 2022, 163, .	2.8	10
42	Encapsulation of Human Islets Using a Biomimetic Self-Assembled Nanomatrix Gel for Protection against Cellular Inflammatory Responses. ACS Biomaterials Science and Engineering, 2017, 3, 2110-2119.	5.2	9
43	Human Glucagon Expression Is under the Control of miR-320a. Endocrinology, 2021, 162, .	2.8	9
44	Enhanced MIN-6 beta cell survival and function on a nitric oxide-releasing peptide amphiphile nanomatrix. International Journal of Nanomedicine, 2014, 9 Suppl 1, 13.	6.7	3
45	LDB1-mediated transcriptional complexes are sensitive to islet stress. Islets, 2022, 14, 58-68.	1.8	2
46	From type 1 diabetes biology to therapy: The Human Islet Research Network. Molecular Metabolism, 2021, , 101283.	6.5	1