Claire Lavigne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-row exclusion nets: an alternative pest control method with no detectable impact on breeding bird assemblages in orchards bordered by hedgerows. Agronomy for Sustainable Development, 2022, 42, 1.	2.2	0
2	Pesticide use in vineyards is affected by semi-natural habitats and organic farming share in the landscape. Agriculture, Ecosystems and Environment, 2022, 333, 107967.	2.5	9
3	Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications, 2022, 13, 2112.	5.8	15
4	Assessing the effect of complex ground types on groundâ€dwelling arthropod movements with video monitoring: Dealing with concealed movements under a layer of plant residues. Ecology and Evolution, 2022, 12, .	0.8	0
5	Great tits nesting in apple orchards preferentially forage in organic but not conventional orchards and in hedgerows. Agriculture, Ecosystems and Environment, 2022, 337, 108074.	2.5	2
6	Agroecology landscapes. Landscape Ecology, 2021, 36, 2235-2257.	1.9	47
7	Pests, but not predators, increase in mixed fruit tree–vegetable plots compared to control vegetable plots in a Mediterranean climate. Agroforestry Systems, 2020, 94, 627-638.	0.9	3
8	Estimating population dynamics parameters of cabbage pests in temperate mixed apple tree-cabbage plots compared to control vegetable plots. Crop Protection, 2020, 129, 105037.	1.0	6
9	Conservation value of pome fruit orchards for overwintering birds in southeastern France. Biodiversity and Conservation, 2020, 29, 3169-3189.	1.2	6
10	Landscape-scale expansion of agroecology to enhance natural pest control: A systematic review. Advances in Ecological Research, 2020, , 1-48.	1.4	28
11	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	4.7	524
12	Local pesticide use intensity conditions landscape effects on biological pest control. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182898.	1.2	48
13	Impact of native forest remnants and wild host plants on the abundance of the South American fruit fly, Anastrepha fraterculus in Brazilian apple orchards. Agriculture, Ecosystems and Environment, 2019, 275, 93-99.	2.5	5
14	Keep your enemies closer: enhancing biological control through individual movement rules to retain natural enemies inside the field. Web Ecology, 2019, 19, 15-26.	0.4	2
15	Phenological asynchrony between the fruit fly Anastrepha fraterculus and early maturing peach cultivars could contribute to pesticide use reduction. Spanish Journal of Agricultural Research, 2019, 17, e1001.	0.3	6
16	Spatial organisation of habitats in agricultural plots affects per-capita predator effect on conservation biological control: An individual based modelling study. Ecological Modelling, 2018, 388, 124-135.	1.2	35
17	Influence of the margin vegetation on the conservation of aphid biological control in apple orchards. Journal of Insect Conservation, 2018, 22, 465-474.	0.8	12
18	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	3.3	401

CLAIRE LAVIGNE

#	Article	IF	CITATIONS
19	Issues and challenges in landscape models for agriculture: from the representation of agroecosystems to the design of management strategies. Landscape Ecology, 2018, 33, 1679-1690.	1.9	12
20	Biochemical and Molecular Mechanisms Associated With the Resistance of the European Corn Borer (Lepidoptera: Crambidae) to Lambda-Cyhalothrin and First Monitoring Tool. Journal of Economic Entomology, 2017, 110, tow267.	0.8	7
21	Bayesian inferences of arthropod movements between hedgerows and orchards. Basic and Applied Ecology, 2017, 21, 76-84.	1.2	17
22	How to quantify a distanceâ€dependent landscape effect on a biological response. Methods in Ecology and Evolution, 2017, 8, 1717-1724.	2.2	41
23	A functional overview of conservation biological control. Crop Protection, 2017, 97, 145-158.	1.0	180
24	A simulation tool to support the design of crop management strategies in fruit tree farms. Application to the reduction of pesticide use. Computers and Electronics in Agriculture, 2017, 142, 260-272.	3.7	7
25	Spider predation on rosy apple aphid in conventional, organic and insecticide-free orchards and its impact on aphid populations. Biological Control, 2017, 104, 57-65.	1.4	26
26	An Unified Framework to Integrate Biotic, Abiotic Processes and Human Activities in Spatially Explicit Models of Agricultural Landscapes. Frontiers in Environmental Science, 2016, 4, .	1.5	8
27	More daughters in a less favourable world: Breeding in intensively-managed orchards affects tertiary sex-ratio in the great tit. Basic and Applied Ecology, 2016, 17, 638-647.	1.2	9
28	Factors driving growers' selection and implementation of an apple crop protection strategy at the farm level. Crop Protection, 2016, 88, 109-117.	1.0	10
29	The impact of landscape composition on the occurrence of a canopy dwelling spider depends on orchard management Agriculture, Ecosystems and Environment, 2016, 215, 20-29.	2.5	32
30	Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development, 2015, 35, 975-998.	2.2	75
31	Temporal dynamics of parasitoid assemblages parasitizing the codling moth. Biological Control, 2015, 82, 31-39.	1.4	8
32	Modelling of Codling Moth Damage as a Function of Adult Monitoring, Crop Protection and Other Orchard Characteristics. Journal of Agricultural, Biological, and Environmental Statistics, 2014, 19, 419-436.	0.7	1
33	Nest-Site and Landscape Characteristics Affect the Distribution of Breeding Pairs of European Rollers <i>Coracias garullus</i> in an Agricultural Area of Southeastern France. Acta Ornithologica, 2014, 49, 23-32.	0.1	15
34	Do species population parameters and landscape characteristics affect the relationship between local population abundance and surrounding habitat amount?. Ecological Complexity, 2013, 15, 62-70.	1.4	21
35	Does landscape composition affect pest abundance and their control by natural enemies? A review. Agriculture, Ecosystems and Environment, 2013, 166, 110-117.	2.5	322
36	Codling moth parasitism is affected by semi-natural habitats and agricultural practices at orchard and landscape levels. Agriculture, Ecosystems and Environment, 2013, 169, 33-42.	2.5	46

CLAIRE LAVIGNE

#	Article	IF	CITATIONS
37	Predation of codling moth eggs is affected by pest management practices at orchard and landscape levels. Agriculture, Ecosystems and Environment, 2013, 166, 86-93.	2.5	36
38	Eco-Evolutionary Dynamics of Agricultural Networks. Advances in Ecological Research, 2013, 49, 339-435.	1.4	54
39	Impact of pest control strategies on the arthropodofauna living in bird nests built in nestboxes in pear and apple orchards. Bulletin of Entomological Research, 2013, 103, 458-465.	0.5	10
40	Early-season predation on aphids by winter-active spiders in apple orchards revealed by diagnostic PCR. Bulletin of Entomological Research, 2013, 103, 148-154.	0.5	31
41	Spatio-temporal dynamics of Orius spp. (Heteroptera: Anthocoridae) abundance in the agricultural landscape. Agriculture, Ecosystems and Environment, 2012, 162, 45-51.	2.5	18
42	Sustainability assessment of crop protection systems: SustainOS methodology and its application for apple orchards. Agricultural Systems, 2012, 113, 1-15.	3.2	50
43	Predation by generalist predators on the codling moth versus a closelyâ€related emerging pest the oriental fruit moth: a molecular analysis. Agricultural and Forest Entomology, 2012, 14, 260-269.	0.7	27
44	Multiple Origins of the Sodium Channel kdr Mutations in Codling Moth Populations. PLoS ONE, 2012, 7, e43543.	1.1	16
45	Spatial scale of insect-mediated pollen dispersal in oilseed rape in an open agricultural landscape. Journal of Applied Ecology, 2011, 48, 689-696.	1.9	50
46	Effects of hedgerow characteristics on intra-orchard distribution of larval codling moth. Agriculture, Ecosystems and Environment, 2011, 140, 395-400.	2.5	22
47	Genetic inferences about the population dynamics of codling moth females at a local scale. Genetica, 2011, 139, 949-960.	O.5	16
48	Apple orchard pest control strategies affect bird communities in southeastern France. Environmental Toxicology and Chemistry, 2011, 30, 212-219.	2.2	45
49	Spatial analyses of ecological count data: A density map comparison approach. Basic and Applied Ecology, 2010, 11, 734-742.	1.2	12
50	A simulation study of the medium-term effects of field patterns on cross-pollination rates in oilseed rape (Brassica napus L.). Ecological Modelling, 2009, 220, 662-672.	1.2	22
51	Neutral modelling of agricultural landscapes by tessellation methods—Application for gene flow simulation. Ecological Modelling, 2009, 220, 3536-3545.	1.2	31
52	The influence of landscape on insect pest dynamics: a case study in southeastern France. Landscape Ecology, 2009, 24, 337-349.	1.9	106
53	Environmental and landscape effects on crossâ€pollination rates observed at long distance among French oilseed rape <i>Brassica napus</i> commercial fields. Journal of Applied Ecology, 2008, 45, 803-812.	1.9	33
54	Spatial sensitivity of maize gene-flow to landscape pattern: a simulation approach. Landscape Ecology, 2008, 23, 1067-1079.	1.9	27

CLAIRE LAVIGNE

#	Article	IF	CITATIONS
55	Where do the feral oilseed rape populations come from? A largeâ€scale study of their possible origin in a farmland area. Journal of Applied Ecology, 2008, 45, 476-485.	1.9	80
56	How do genetically modified (GM) crops contribute to background levels of GM pollen in an agricultural landscape?. Journal of Applied Ecology, 2008, 45, 1104-1113.	1.9	32
57	Modelling impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes: The MAPOD model. European Journal of Agronomy, 2008, 28, 471-484.	1.9	73
58	GENEXP, un logiciel simulateur de paysages agricoles pour l'étude de la diffusion de transgènes. Revue Internationale De Géomatique, 2007, 17, 469-487.	0.2	9
59	Importance of the Life Cycle in Sympatric Host Race Formation and Speciation of Pathogens. Phytopathology, 2006, 96, 280-287.	1.1	80
60	Mixing of propagules from discrete sources at long distance: comparing a dispersal tail to an exponential. BMC Ecology, 2006, 6, 3.	3.0	87
61	Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Molecular Ecology, 2006, 16, 487-499.	2.0	68
62	Genetic differentiation of neutral markers and quantitative traits in predominantly selfing metapopulations: confronting theory and experiments with Arabidopsis thaliana. Genetical Research, 2006, 87, 1-12.	0.3	32
63	High diversity of oilseed rape pollen clouds over an agro-ecosystem indicates long-distance dispersal. Molecular Ecology, 2005, 14, 2269-2280.	2.0	67
64	Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. Journal of Applied Ecology, 2005, 43, 141-151.	1.9	89
65	EXPERIMENTAL DEMONSTRATION OF A CAUSAL RELATIONSHIP BETWEEN HETEROGENEITY OF SELECTION AND GENETIC DIFFERENTIATION IN QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2004, 58, 1434.	1.1	1
66	EXPERIMENTAL DEMONSTRATION OF A CAUSAL RELATIONSHIP BETWEEN HETEROGENEITY OF SELECTION AND GENETIC DIFFERENTIATION IN QUANTITATIVE TRAITS. Evolution; International Journal of Organic Evolution, 2004, 58, 1434-1445.	1.1	30
67	Dynamic management of genetic resources: maintenance of outcrossing in experimental metapopulations of a predominantly inbreeding species. Conservation Genetics, 2004, 5, 259-269.	0.8	16
68	CORN POLLEN DISPERSAL: QUASI-MECHANISTIC MODELS AND FIELD EXPERIMENTS. Ecological Monographs, 2003, 73, 131-150.	2.4	110
69	Using seed purity data to estimate an average pollen mediated gene flow from crops to wild relatives. Theoretical and Applied Genetics, 2002, 104, 139-145.	1.8	32
70	Evolution of genetic diversity in metapopulations: Arabidopsis thaliana as an experimental model. Genetics Selection Evolution, 2001, 33, .	1.2	19
71	Genetic Variation in the Response of Pollen Germination to Nutrient Availability and Elevated Atmospheric CO2Concentrations inEpilobium angustifolium. International Journal of Plant Sciences, 1999, 160, 109-115.	0.6	5
72	A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theoretical and Applied Genetics, 1998, 96, 886-896.	1.8	122

#	Article	IF	CITATIONS
73	Genetic variation in response to elevated CO2 in three grassland perennials — a field experiment with two competition regimes. Acta Oecologica, 1997, 18, 263-268.	0.5	17