
Gerald R Dickens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for enhanced fluvial channel mobility and fine sediment export due to precipitation seasonality during the Paleocene-Eocene thermal maximum. Geology, 2022, 50, 116-120.	2.0	14
2	Microbial Alkalinity Production and Silicate Alteration in Methane Charged Marine Sediments: Implications for Porewater Chemistry and Diagenetic Carbonate Formation. Frontiers in Earth Science, 2022, 9, .	0.8	6
3	Neogene Mass Accumulation Rate of Carbonate Sediment Across Northern Zealandia, Tasman Sea, Southwest Pacific. Paleoceanography and Paleoclimatology, 2022, 37, e2021PA004294.	1.3	8
4	The Late Mioceneâ€Early Pliocene Biogenic Bloom in the Eastern Equatorial Pacific: New Insights From Integrated Ocean Drilling Program Site U1335. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	1
5	Sizeâ€Fractionâ€Specific Stable Isotope Variations as a Framework for Interpreting Early Eocene Bulk Sediment Carbon Isotope Records. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004132.	1.3	2
6	Timescale dependent sedimentary record during the past 130 kyr from a tropical mixed siliciclastic–carbonate shelf edge and slope: Ashmore Trough (southern Gulf of Papua). Sedimentology, 2021, 68, 2606-2648.	1.6	8
7	Biotic Response to Early Eocene Warming Events: Integrated Record From Offshore Zealandia, North Tasman Sea. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004179.	1.3	4
8	Dextral to sinistral coiling switch in planktic foraminifer Morozovella during the Early Eocene Climatic Optimum. Global and Planetary Change, 2021, 206, 103634.	1.6	1
9	Understanding Bulk Sediment Stable Isotope Records in the Eastern Equatorial Pacific, From Seven Million Years Ago to Present Day. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003586.	1.3	9
10	Eocene (46–44ÂMa) Onset of Australiaâ€Pacific Plate Motion in the Southwest Pacific Inferred From Stratigraphy in New Caledonia and New Zealand. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008699.	1.0	15
11	Eocene carbonate accumulation in the north-central Pacific Ocean: new insights from Ocean Drilling Program Site 1209, Shatsky Rise. Sedimentary Geology, 2020, 405, 105705.	1.0	4
12	Demise of the Planktic Foraminifer Genus Morozovella during the Early Eocene Climatic Optimum: New Records from ODP Site 1258 (Demerara Rise, Western Equatorial Atlantic) and Site 1263 (Walvis) Tj ETQq0	0 DorgBT /	Overlock 10
13	Continental-scale geographic change across Zealandia during Paleogene subduction initiation. Geology, 2020, 48, 419-424.	2.0	69
14	The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 2019, 12, 3149-3206.	1.3	131
15	High-resolution and high-precision correlation of dark and light layers in the Quaternary hemipelagic sediments of the Japan Sea recovered during IODP Expedition 346. Progress in Earth and Planetary Science, 2018, 5, .	1.1	55
16	Magneto-biostratigraphic constraints of the Eocene micrite–calciturbidite transition in New Caledonia: tectonic implications. New Zealand Journal of Geology, and Geophysics, 2018, 61, 145-163.	1.0	13
17	Planktic foraminiferal response to early Eocene carbon cycle perturbations in the southeast Atlantic Ocean (ODP Site 1263). Global and Planetary Change, 2017, 158, 119-133.	1.6	24

¹⁸ Did Photosymbiont Bleaching Lead to the Demise of Planktic Foraminifer <i>Morozovella</i> at the Early Eocene Climatic Optimum?. Paleoceanography, 2017, 32, 1115-1136.	3.0	16
--	-----	----

#	Article	IF	CITATIONS
19	Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations. Biogeosciences, 2017, 14, 2929-2953.	1.3	22
20	Major perturbations in the global carbon cycle and photosymbiont-bearing planktic foraminifera during the early Eocene. Climate of the Past, 2016, 12, 981-1007.	1.3	33
21	Dynamic simulations of potential methane release from East Siberian continental slope sediments. Geochemistry, Geophysics, Geosystems, 2016, 17, 872-886.	1.0	30
22	An alternative model for CaCO3 over-shooting during the PETM: Biological carbonate compensation. Earth and Planetary Science Letters, 2016, 453, 223-233.	1.8	19
23	Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section). Climate of the Past, 2016, 12, 883-909.	1.3	18
24	Gas hydrate dissociation prolongs acidification of the Anthropocene oceans. Geophysical Research Letters, 2015, 42, 9337.	1.5	32
25	Carbon and oxygen isotopes of bulk carbonate in sediment deposited beneath the eastern equatorial Pacific over the last 8 million years. Paleoceanography, 2015, 30, 1261-1286.	3.0	26
26	Early Paleogene variations in the calcite compensation depth: new constraints using old borehole sediments from across Ninetyeast Ridge, central Indian Ocean. Climate of the Past, 2015, 11, 473-493.	1.3	30
27	The onset of the Early Eocene Climatic Optimum at Branch Stream, Clarence River valley, New Zealand. New Zealand Journal of Geology, and Geophysics, 2015, 58, 262-280.	1.0	23
28	Onset of carbon isotope excursion at the Paleocene-Eocene thermal maximum took millennia, not 13 years. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1062-3.	3.3	44
29	The impact of lithologic heterogeneity and focused fluid flow upon gas hydrate distribution in marine sediments. Journal of Geophysical Research: Solid Earth, 2014, 119, 6705-6732.	1.4	46
30	The relationship between wet bulk density and carbonate content in sediments from the Eastern Equatorial Pacific. Marine Geology, 2013, 344, 41-52.	0.9	11
31	Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. , 2013, 9, 21-36.		134
32	Understanding long-term carbon cycle trends: The late Paleocene through the early Eocene. Paleoceanography, 2013, 28, 650-662.	3.0	52
33	Core alignment and composite depth scale for the lower Paleogene through uppermost Cretaceous interval at Deep Sea Drilling Project Site 577. Newsletters on Stratigraphy, 2013, 46, 47-68.	0.5	20
34	Large-Amplitude Variations in Carbon Cycling and Terrestrial Weathering during the Latest Paleocene and Earliest Eocene: The Record at Mead Stream, New Zealand. Journal of Geology, 2012, 120, 487-505.	0.7	70
35	A comment on "Pliocene climate change of the Southwest Pacific and the impact of ocean gateways― by C. Karas, D. Nürnberg, R. Tiedemann, D. Garbe Schönberg, EPSL 301, 117–124 (2011). Earth and Planetar Science Letters, 2012, 331-332, 364-365.	у1.8	3
36	Assessing offsets between the <i>l´</i> ¹³ C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations. Global Biogeochemical Cycles, 2012, 26, .	1.9	79

#	Article	IF	CITATIONS
37	Analytical theory relating the depth of the sulfateâ€methane transition to gas hydrate distribution and saturation. Geochemistry, Geophysics, Geosystems, 2011, 12, .	1.0	25
38	Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: A numerical modeling perspective. Journal of Geophysical Research, 2011, 116, .	3.3	83
39	Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Climate of the Past, 2011, 7, 831-846.	1.3	183
40	Abundant Early Palaeogene marine gas hydrates despite warm deep-ocean temperatures. Nature Geoscience, 2011, 4, 848-851.	5.4	40
41	The geochemistry of primary and weathered oil shale and coquina across the Julia Creek vanadium deposit (Queensland, Australia). Mineralium Deposita, 2010, 45, 599-620.	1.7	15
42	South Pacific intermediate water oxygen depletion at the onset of the Paleocene-Eocene thermal maximum as depicted in New Zealand margin sections. Paleoceanography, 2010, 25, n/a-n/a.	3.0	59
43	Constraints on ocean acidification associated with rapid and massive carbon injections: The early Paleogene record at ocean drilling program site 1215, equatorial Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298, 409-420.	1.0	86
44	Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geoscience, 2009, 2, 576-580.	5.4	367
45	Variations in temperature and salinity of the surface water above the middle Okinawa Trough during the past 37kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281, 154-164.	1.0	57
46	Discrimination of sources of terrigenous sediment deposited in the central Arctic Ocean through the Cenozoic. Paleoceanography, 2009, 24, .	3.0	13
47	Correction to "Discrimination of sources of terrigenous sediment deposited in the central Arctic Ocean through the Cenozoic― Paleoceanography, 2009, 24, n/a-n/a.	3.0	0
48	Methane Hydrates, Carbon Cycling, and Environmental Change. Encyclopedia of Earth Sciences Series, 2009, , 560-566.	0.1	0
49	An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 2008, 451, 279-283.	13.7	2,725
50	The riddle of the clays. Nature Geoscience, 2008, 1, 86-88.	5.4	13
51	Benthic Foraminiferal response to sea level change in the mixed siliciclasticâ€carbonate system of southern Ashmore Trough (Gulf of Papua). Journal of Geophysical Research, 2008, 113, .	3.3	16
52	Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale. Journal of Geophysical Research, 2008, 113, .	3.3	48
53	Excess ²¹⁰ Pb inventories and fluxes along the continental slope and basins of the Gulf of Papua. Journal of Geophysical Research, 2008, 113, .	3.3	43
54	Late Pleistocene and Holocene sedimentation, organic arbon delivery, and paleoclimatic inferences on the continental slope of the northern Pandora Trough, Gulf of Papua. Journal of Geophysical Research, 2008, 113, .	3.3	15

#	Article	IF	CITATIONS
55	Neogene evolution of the mixed carbonateâ€siliciclastic system in the Gulf of Papua, Papua New Guinea. Journal of Geophysical Research, 2008, 113, .	3.3	42
56	Sulfateâ€methane transition as a proxy for average methane hydrate saturation in marine sediments. Geophysical Research Letters, 2008, 35, .	1.5	45
57	Deep water geomorphology of the mixed siliciclasticâ€carbonate system, Gulf of Papua. Journal of Geophysical Research, 2008, 113, .	3.3	36
58	Eustatic variations during the Paleoceneâ \in Eocene greenhouse world. Paleoceanography, 2008, 23, .	3.0	167
59	Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes. Numerische Mathematik, 2007, 307, 861-900.	0.7	65
60	Siliciclastic Sediment Across the North Queensland Margin (Australia): A Holocene Perspective on Reciprocal Versus Coeval Deposition in Tropical Mixed Siliciclastic-Carbonate Systems. Journal of Sedimentary Research, 2007, 77, 572-586.	0.8	43
61	Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54, 1216-1239.	0.6	100
62	Labile barite contents and dissolved barium concentrations on Blake Ridge: New perspectives on barium cycling above gas hydrate systems. Journal of Geochemical Exploration, 2007, 95, 48-65.	1.5	43
63	Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology, 2007, 35, 699.	2.0	200
64	Geology and petroleum potential of the Fairway Basin in the Tasman Sea. Australian Journal of Earth Sciences, 2007, 54, 629-645.	0.4	24
65	Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 2007, 450, 1218-1221.	13.7	296
66	Reappraisal of early Paleogene CCD curves: foraminiferal assemblages and stable carbon isotopes across the carbonate facies of Perth Abyssal Plain. International Journal of Earth Sciences, 2007, 96, 925-946.	0.9	22
67	Eocene hyperthermal event offers insight into greenhouse warming. Eos, 2006, 87, 165.	0.1	91
68	Editorial: Welcome from the new Editors. Paleoceanography, 2006, 21, n/a-n/a.	3.0	0
69	Barium cycling in shallow sediment above active mud volcanoes in the Gulf of Mexico. Chemical Geology, 2006, 226, 1-30.	1.4	63
70	Correlation of Barremian-Aptian (mid-Cretaceous) dinoflagellate cyst assemblages between the Tethyan and Austral realms. Cretaceous Research, 2006, 27, 792-813.	0.6	23
71	Scaling of Thermodynamic and Transport Processes for Predicting Methane Hydrate Saturation in Marine Sediments Worldwide. , 2006, , .		5
72	Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 2006, 441, 610-613.	13.7	578

#	Article	IF	CITATIONS
73	Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 2006, 441, 606-609.	13.7	284
74	The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 2006, 441, 601-605.	13.7	471
75	Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature, 2006, 442, 671-675.	13.7	410
76	Carbonate alteration of the Upper Mount McRae Shale at Mount Whaleback, Western Australia – implications for iron ore genesis. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2006, 115, 161-166.	0.8	1
77	Biostratigraphy and carbon isotope stratigraphy of uppermost Cretaceousâ€lower Cenozoic Muzzle Group in middle Clarence valley, New Zealand. Journal of the Royal Society of New Zealand, 2005, 35, 345-383.	1.0	19
78	Sediment fluxes to Marion Plateau (southern Great Barrier Reef province) over the last 130 ky: New constraints on †transgressive-shedding' off northeastern Australia. Marine Geology, 2005, 219, 27-45.	0.9	26
79	The Paleocene–Eocene transition at Mead Stream, New Zealand: a southern Pacific record of early Cenozoic global change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 215, 313-343.	1.0	94
80	Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	125
81	Hydrocarbon-driven warming. Nature, 2004, 429, 513-515.	13.7	90
82	Carbonate alteration of the Upper Mount McRae Shale beneath the martite-microplaty hematite ore deposit at Mount Whaleback, Western Australia. Mineralium Deposita, 2004, 39, 632-645.	1.7	21
83	Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core. Earth and Planetary Science Letters, 2004, 222, 829-829.	1.8	1
84	Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth and Planetary Science Letters, 2004, 222, 845-845.	1.8	2
85	Distributions of Microbial Activities in Deep Subseafloor Sediments. Science, 2004, 306, 2216-2221.	6.0	681
86	Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core. Earth and Planetary Science Letters, 2004, 222, 829-843.	1.8	173
87	Veins and hydrothermal fluid flow in the Mt. Whaleback Iron Ore District, eastern Hamersley Province, Western Australia. Precambrian Research, 2004, 128, 441-474.	1.2	51
88	Comment on "A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion―by D.V. Kent et al. [Earth Planet. Sci. Lett. 211 (2003) 13–26]. Earth and Planetary Science Letters, 2004, 217, 197-200.	1.8	18
89	Methane-driven oceanic eruptions and mass extinctions: Comment and Reply. Geology, 2004, 32, e42-e43.	2.0	0
90	Late Quaternary shedding of shallow-marine carbonate along a tropical mixed siliciclastic-carbonate shelf: Great Barrier Reef, Australia. Sedimentology, 2003, 50, 1061-1077.	1.6	48

#	Article	IF	CITATIONS
91	Anatomy of the buried Burdekin River channel across the Great Barrier Reef shelf: how does a major river operate on a tropical mixed siliciclastic/carbonate margin during sea level lowstand?. Sedimentary Geology, 2003, 157, 291-301.	1.0	56
92	Massive siliciclastic discharge to slopes of the Great Barrier Reef Platform during sea-level transgression: constraints from sediment cores between 15ŰS and 16ŰS latitude and possible explanations. Sedimentary Geology, 2003, 162, 141-158.	1.0	52
93	Foraminiferal and carbon isotope stratigraphy through the Paleoceneâ€Eocene transition at Dee Stream, Marlborough, New Zealand. New Zealand Journal of Geology, and Geophysics, 2003, 46, 1-19.	1.0	29
94	The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene thermal maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 194, 387-403.	1.0	150
95	From banded iron-formation to iron ore: geochemical and mineralogical constraints from across the Hamersley Province, Western Australia. Chemical Geology, 2003, 197, 215-251.	1.4	68
96	Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 2003, 213, 169-183.	1.8	383
97	Excess barite accumulation during the Paleocene-Eocene thermal Maximum: Massive input of dissolved barium from seafloor gas hydrate reservoirs. , 2003, , .		29
98	Tropical view of Quaternary sequence stratigraphy: Siliciclastic accumulation on slopes east of the Great Barrier Reef since the Last Glacial Maximum. Geology, 2003, 31, 1013.	2.0	44
99	In situ methane concentrations at Hydrate Ridge, offshore Oregon: New constraints on the global gas hydrate inventory from an active margin. Geology, 2003, 31, 833-836.	2.0	134
100	Coupled productivity and carbon isotope records in the southwest Pacific Ocean during the late Miocene–early Pliocene biogenic bloom. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 187, 61-82.	1.0	70
101	Early Palaeogene planktic foraminiferal and carbon isotope stratigraphy, Hole 762C, Exmouth Plateau, northwest Australian margin. Journal of Micropalaeontology, 2002, 21, 29-42.	1.3	10
102	Holocene storage of siliciclastic sediment around islands on the middle shelf of the Great Barrier Reef Platform, north-east Australia. Sedimentology, 2002, 49, 603-621.	1.6	18
103	Variable methane fluxes in shallow marine systems over geologic time. Marine Geology, 2002, 189, 175-196.	0.9	66
104	The potential volume of oceanic methane hydrates with variable external conditions. Organic Geochemistry, 2001, 32, 1179-1193.	0.9	134
105	Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir. Geochimica Et Cosmochimica Acta, 2001, 65, 529-543.	1.6	221
106	Terrigenous sediment on Ceara Rise: a Cenozoic record of South American orogeny and erosion. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 165, 215-229.	1.0	65
107	Late Holocene sediment in Nara Inlet, central Great Barrier Reef platform, Australia: sediment accumulation on the middle shelf of a tropical mixed clastic/carbonate system. Marine Geology, 2001, 176, 39-54.	0.9	27
108	Carbon addition and removal during the Late Palaeocene Thermal Maximum: basic theory with a preliminary treatment of the isotope record at ODP Site 1051, Blake Nose. Geological Society Special Publication, 2001, 183, 293-305.	0.8	27

#	Article	IF	CITATIONS
109	Sediment flux across the Great Barrier Reef Shelf to the Queensland Trough over the last 300ky. Sedimentary Geology, 2000, 133, 49-92.	1.0	81
110	An assessment of the biogeochemical feedback response to the climatic and chemical perturbations of the LPTM. Gff, 2000, 122, 188-189.	0.4	13
111	New Zealand perspective on global change from late Cretaceous to early Eocene: (a) the Paleocene—Eocene transition at Mead Stream, Marlborough. Gff, 2000, 122, 71-72.	0.4	3
112	The LPTM gas hydrate dissociation hypothesis: New evidence from the western North Atlantic. Gff, 2000, 122, 84-85.	0.4	0
113	Thinned crust in southwest Pacific may harbor gas hydrate. Eos, 2000, 81, 182.	0.1	3
114	The Latest Miocene–Early Pliocene biogenic bloom: a revised Indian Ocean perspective. Marine Geology, 1999, 161, 75-91.	0.9	120
115	The blast in the past. Nature, 1999, 401, 752-755.	13.7	84
116	The Source and Fate of Massive Carbon Input During the Latest Paleocene Thermal Maximum. Science, 1999, 286, 1531-1533.	6.0	329
117	Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake) Tj ETQq1	1.0.7843 1.4	14 rgBT /0v 170
118	Causes and implications of the middle rare earth element depletion in the eolian component of North Pacific sediment. Geochimica Et Cosmochimica Acta, 1998, 62, 1735-1744.	1.6	39
119	High-resolution records of the late Paleocene thermal maximum and circum-Caribbean volcanism: Is there a causal link?: Comment and Reply. Geology, 1998, 26, 670.	2.0	8
120	A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 1997, 25, 259.	2.0	637
121	Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications. Journal of Geophysical Research, 1997, 102, 773-783.	3.3	167
122	Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 1997, 385, 426-428.	13.7	326
123	A rapidly deposited pennate diatom ooze in Upper Miocene-Lower Pliocene sediment beneath the North Pacific polar front. Marine Micropaleontology, 1997, 31, 177-182.	0.5	25
124	Quantitative resolution of eolian continental crustal material and volcanic detritus in North Pacific surface sediment. Paleoceanography, 1996, 11, 115-127.	3.0	63
125	Sediment geochemical evidence for an early-middle Gilbert (early Pliocene) productivity peak in the North Pacific Red Clay Province. Marine Micropaleontology, 1996, 27, 107-120.	0.5	29
126	Rare earth element deposition in pelagic sediment at the Cenomanian-Turonian Boundary, Exmouth Plateau. Geophysical Research Letters, 1995, 22, 203-206.	1.5	5

#	Article	IF	CITATIONS
127	Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 1995, 10, 965-971.	3.0	1,177
128	Late Miocene-Early Pliocene manganese redirection in the central Indian Ocean: Expansion of the Intermediate Water oxygen minimum zone. Paleoceanography, 1994, 9, 169-181.	3.0	68
129	Methane hydrate stability in seawater. Geophysical Research Letters, 1994, 21, 2115-2118.	1.5	328
130	Global change and manganese deposition at the Cenomanianâ€ŧuronian boundary. Marine Georesources and Geotechnology, 1993, 11, 27-43.	1.2	20
131	Geomorphology and Internal Architecture of the Ancestral Burdekin River Across the Great Barrier Reef Shelf, North-East Australia. , 0, , 321-347.		4
132	Modeling the Global Carbon Cycle with a Gas Hydrate Capacitor: Significance for the Latest Paleocene Thermal Maximum. Geophysical Monograph Series, 0, , 19-38.	0.1	22
133	Expedition 371 summary. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	10
134	Expedition 371 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	14
135	Site U1507. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4
136	Site U1508. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	5
137	Site U1509. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	4
138	Site U1510. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
139	Site U1511. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2
140	Data report: stable isotope composition of Eocene bulk carbonate at Sites U1331, U1332, and U1333. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	4
141	Data report: revised composite depth scales for Sites U1336, U1337, and U1338. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	20
142	Site U1423. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	7
143	Site U1424. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	7
144	Site U1425. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	7

#	Article	IF	CITATIONS
145	Site U1426. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	5
146	Site U1427. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	9
147	Detection of methane gas hydrate in the pressure core sampler (PCS): volume-pressure-time relations during controlled degassing experiments. , 0, , .		16
148	Noble gases in methane hydrate from the Blake Ridge. , 0, , .		2
149	Lithology of the upper gas hydrate zone, Blake Outer Ridge: a link between diatoms, porosity, and gas hydrate. , 0, , .		20
150	Carbonate Dissolution Episodes in Paleocene and Eocene Sediment, Shatsky Rise, West-Central Pacific. , 0, , .		22
151	Data Report: Major Cation Concentrations of Interstitial Waters Collected from Deep Sediments of Eastern Equatorial Pacific and Peru Margin (ODP Leg 201). , 0, , .		4
152	Data report: terrigenous grain-size distributions at Sites 1263 and 1267: testing the applicability of Leg 208 sediments for eolian analysis , 0, , .		3
153	Rhizon Sampling of Pore Waters on Scientific Drilling Expeditions: An Example from the IODP Expedition 302, Arctic Coring Expedition (ACEX). Scientific Drilling, 0, 4, 22-25.	1.0	64
154	Technical Appendix: Status of the isothermal decompression analysis system (IDAS). , 0, , .		0
155	Data Report: Additional shipboard information for the pressure core sampler (PCS). , 0, , .		2
156	Copper Mineralization at Site 884 in the North Pacific. , 0, , .		1
157	CBEP 2014: preface and dedication. Rendiconti Online Societa Geologica Italiana, 0, 31, 1-2.	0.3	0
158	Continental - island arc fluctuations through time and the Eocene transition from a greenhouse to an icehouse world. Rendiconti Online Societa Geologica Italiana, 0, 31, 62-63.	0.3	1
159	Site U1422. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	8
160	Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans. Scientific Drilling, 0, 24, 61-70.	1.0	2
161	Site U1506. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	2