Eulalia MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555042/publications.pdf

Version: 2024-02-01

75 papers 1,168 citations

394421 19 h-index 395702 33 g-index

76 all docs

76 docs citations

76 times ranked 455 citing authors

#	Article	IF	Citations
1	A modified Newton-Jarratt's composition. Numerical Algorithms, 2010, 55, 87-99.	1.9	186
2	Increasing the convergence order of an iterative method for nonlinear systems. Applied Mathematics Letters, 2012, 25, 2369-2374.	2.7	94
3	Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 2009, 231, 541-551.	2.0	72
4	New modifications of Potra–Pták's method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 2010, 234, 2969-2976.	2.0	65
5	Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems. Journal of Computational and Applied Mathematics, 2015, 275, 412-420.	2.0	53
6	Steffensen type methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 2012, 236, 3058-3064.	2.0	48
7	A way to optimally solve a time-dependent Vehicle Routing Problem with Time Windows. Operations Research Letters, 2009, 37, 37-42.	0.7	47
8	Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 2015, 53, 880-892.	1.5	40
9	A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 2013, 252, 95-102.	2.0	34
10	Modified Newton's method for systems of nonlinear equations with singular Jacobian. Journal of Computational and Applied Mathematics, 2009, 224, 77-83.	2.0	33
11	Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 2011, 217, 4548-4556.	2.2	30
12	Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation, 2016, 281, 252-265.	2.2	28
13	Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Mathematical and Computer Modelling, 2013, 57, 1950-1956.	2.0	26
14	The Rural Postman Problem on mixed graphs with turn penalties. Computers and Operations Research, 2002, 29, 887-903.	4.0	25
15	Third and fourth order iterative methods free from second derivative for nonlinear systems. Applied Mathematics and Computation, 2009, 211, 190-197.	2.2	23
16	A family of iterative methods with sixth and seventh order convergence for nonlinear equations. Mathematical and Computer Modelling, 2010, 52, 1490-1496.	2.0	22
17	On the local convergence study for an efficient k-step iterative method. Journal of Computational and Applied Mathematics, 2018, 343, 753-761.	2.0	22
18	A transformation for the mixed general routing problem with turn penalties. Journal of the Operational Research Society, 2008, 59, 540-547.	3.4	21

#	Article	IF	CITATIONS
19	The mixed capacitated general routing problem with turn penalties. Expert Systems With Applications, 2011, 38, 12954-12966.	7.6	20
20	On the semilocal convergence of a three steps Newton-type iterative process under mild convergence conditions. Numerical Algorithms, 2015, 70, 377-392.	1.9	20
21	Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces. Calcolo, 2017, 54, 527-539.	1.1	19
22	A study of the local convergence of a fifth order iterative method. Indian Journal of Pure and Applied Mathematics, 2020, 51, 439-455.	0.5	19
23	On an efficient <mml:math altimg="si5.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -step iterative method for nonlinear equations. Journal of Computational and Applied Mathematics, 2016, 302, 258-271.	2.0	18
24	Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms, 2014, 67, 365-384.	1.9	16
25	Efficient three-step iterative methods with sixth order convergence for nonlinear equations. Numerical Algorithms, 2010, 53, 485-495.	1.9	15
26	Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 2016, 13, 4219-4235.	0.8	15
27	Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms, 2017, 76, 309-331.	1.9	15
28	Iterative methods for use with nonlinear discrete algebraic models. Mathematical and Computer Modelling, 2010, 52, 1251-1257.	2.0	13
29	A New High-Order and Efficient Family of Iterative Techniques for Nonlinear Models. Complexity, 2020, 2020, 1-11.	1.6	12
30	Third order iterative methods free from second derivative for nonlinear systems. Applied Mathematics and Computation, 2009, 215, 58-65.	2,2	11
31	A Side-by-Side Single Sex Age-Structured Human Population Dynamic Model: Exact Solution and Model Validation. Journal of Mathematical Sociology, 2008, 32, 285-321.	1.2	9
32	Accelerated methods of order <mml:math altimg="si12.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn><mml:mi>p</mml:mi></mml:math> for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 2010, 233, 2696-2702.	2.0	9
33	Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics, 2018, 330, 732-741.	2.0	9
34	A class of efficient highâ€order iterative methods with memory for nonlinear equations and their dynamics. Mathematical Methods in the Applied Sciences, 2018, 41, 7263-7282.	2.3	7
35	A Family of Derivative-Free Methods with High Order of Convergence and Its Application to Nonsmooth Equations. Abstract and Applied Analysis, 2012, 2012, 1-15.	0.7	6
36	Derivative-Free King's Scheme for Multiple Zeros of Nonlinear Functions. Mathematics, 2021, 9, 1242.	2.2	6

#	Article	IF	CITATIONS
37	Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes. Mathematics, 2020, 8, 1747.	2.2	5
38	Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations. Mathematics, 2020, 8, 302.	2.2	5
39	On nonlinear Fredholm integral equations with nonâ€differentiable Nemystkii operator. Mathematical Methods in the Applied Sciences, 2020, 43, 7961-7976.	2.3	4
40	Convergence and dynamics of improved Chebyshev-Secant-type methods for non differentiable operators. Numerical Algorithms, 2021, 86, 1051-1070.	1.9	4
41	An improvement of the Kurchatov method by means of a parametric modification. Mathematical Methods in the Applied Sciences, 2022, 45, 6844-6860.	2.3	4
42	Multipoint efficient iterative methods and the dynamics of Ostrowski's method. International Journal of Computer Mathematics, 2019, 96, 1687-1701.	1.8	3
43	A multistep Steffensenâ€ŧype method for solving nonlinear systems of equations. Mathematical Methods in the Applied Sciences, 2020, 43, 7518-7536.	2.3	3
44	Solving nonlinear integral equations with non-separable kernel via a high-order iterative process. Applied Mathematics and Computation, 2021, 409, 126385.	2.2	3
45	Some learning objects to explain Kepler's laws. Computer Applications in Engineering Education, 2013, 21, 1-7.	3.4	2
46	Derivative free iterative methods for nonlinear systems. Applied Mathematics and Computation, 2015, 259, 955-966.	2.2	2
47	Local convergence of a family of iterative methods for Hammerstein equations. Journal of Mathematical Chemistry, 2016, 54, 1370-1386.	1.5	2
48	Directional k-Step Newton Methods in n Variables and its Semilocal Convergence Analysis. Mediterranean Journal of Mathematics, 2018, 15, 1.	0.8	2
49	Improving the accessibility of Steffensen's method by decomposition of operators. Journal of Computational and Applied Mathematics, 2018, 330, 536-552.	2.0	2
50	Convergence of an Iteration of Fifth-Order Using Weaker Conditions on First Order Fréchet Derivative in Banach Spaces. International Journal of Computational Methods, 2018, 15, 1850048.	1.3	2
51	A reliable treatment to solve nonlinear Fredholm integral equations with non-separable kernel. Journal of Computational and Applied Mathematics, 2020, 404, 113115.	2.0	2
52	Semilocal Convergence of the Extension of Chun's Method. Axioms, 2021, 10, 161.	1.9	2
53	A note on some three-step iterative methods for nonlinear equations. Applied Mathematics and Computation, 2008, 202, 252-255.	2.2	1
54	Convergence of a Two-Step Iterative Method for Nondifferentiable Operators in Banach Spaces. Complexity, 2018, 2018, 1-11.	1.6	1

#	Article	IF	CITATIONS
55	Local Convergence and Dynamics of a Family of Iterative Methods for Multiple Roots of Nonlinear Equations. Vietnam Journal of Mathematics, 2019, 47, 367-386.	0.8	1
56	Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations. Mathematics, 2020, 8, 1950.	2.2	1
57	Localization and separation of solutions for Fredholm integral equations. Journal of Mathematical Analysis and Applications, 2020, 487, 124008.	1.0	1
58	Iterative schemes for solving the Chandrasekhar H-equation using the Bernstein polynomials. Journal of Computational and Applied Mathematics, 2021, 404, 113391.	2.0	1
59	Extended convergence for a fifthâ€order novel scheme free from derivatives. Mathematical Methods in the Applied Sciences, 0, , .	2.3	1
60	Recurrence relations for a family of iterations assuming HÃ \P lder continuous second order FrÃ \P chet derivative. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, .	1.0	1
61	Parallel iterative splitting methods: Algorithms and applications. , 2020, , .		1
62	A Family of Derivative Free Algorithms for Multiple-Roots of Van Der Waals Problem. Symmetry, 2022, 14, 562.	2.2	1
63	Optimal Derivative-Free Methods for Solving Nonlinear Equations. , 2011, , .		0
64	Accelerated Steffensen-Type Methods for Solving Nonlinear Systems of Equations. , 2011, , .		0
65	An algorithm to evaluate routing conditions in smartphones-based wireless networks. Expert Systems With Applications, 2013, 40, 5033-5048.	7.6	0
66	Dynamical study while searching equilibrium solutions in N-body problem. Journal of Computational and Applied Mathematics, 2016, 297, 26-40.	2.0	0
67	Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants. Discrete Dynamics in Nature and Society, 2017, 2017, 1-6.	0.9	0
68	A note on "Convergence radius of Osada's method under Hölder continuous condition― Applied Mathematics and Computation, 2018, 321, 689-699.	2.2	0
69	Local convergence study for multiple roots. Estimating the multiplicity. AIP Conference Proceedings, 2018, , .	0.4	0
70	Local Convergence Balls for Nonlinear Problems with Multiplicity and Their Extension to Eighth-Order Convergence. Mathematical Problems in Engineering, 2019, 2019, 1-17.	1.1	0
71	Domain of existence for the solution of some IVP's and BVP's by using an efficient ninthâ€order iterative method. Mathematical Methods in the Applied Sciences, 2020, 43, 7934-7947.	2.3	0
72	Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations. Mathematics, 2020, 8, 384.	2.2	0

EULALIA MARTÃNEZ

#	Article	IF	CITATIONS
73	On the Chandrasekhar integral equation. Computational and Mathematical Methods, 2021, 3, e1150.	0.8	O
74	Toward a unified theory of inverse-free two-step point-to-point iterative processes. AIP Conference Proceedings, 2022, , .	0.4	0
75	An Algorithm Derivative-Free to Improve the Steffensen-Type Methods. Symmetry, 2022, 14, 4.	2.2	0