Ying-Chen Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555035/publications.pdf

Version: 2024-02-01

32	791	17 h-index	27
papers	citations		g-index
32	32	32	687
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel Insights into the Kinetics, Evolved Gases, and Mechanisms for Biomass (Sugar Cane Residue) Pyrolysis. Environmental Science & Environmental Scie	10.0	66
2	Pyrolysis characteristics of soil humic substances using TG-FTIR-MS combined with kinetic models. Science of the Total Environment, 2020, 698, 134237.	8.0	62
3	Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy. Chemosphere, 2019, 225, 507-516.	8.2	54
4	Interaction between carbamazepine and humic substances: A fluorescence spectroscopy study. Environmental Toxicology and Chemistry, 2008, 27, 95-102.	4.3	51
5	Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy. Environmental Pollution, 2018, 234, 726-734.	7.5	50
6	Novel Insights into the Molecular-Level Mechanism Linking the Chemical Diversity and Copper Binding Heterogeneity of Biochar-Derived Dissolved Black Carbon and Dissolved Organic Matter. Environmental Science & Dissolved Stephology, 2021, 55, 11624-11636.	10.0	48
7	Spectroscopic characterization and molecular weight distribution of dissolved organic matter in sediment porewaters from Lake Erhai, Southwest China. Biogeochemistry, 2006, 81, 179-189.	3.5	44
8	Interactions between stepwise-eluted sub-fractions of fulvic acids and protons revealed by fluorescence titration combined with EEM-PARAFAC. Science of the Total Environment, 2017, 605-606, 58-65.	8.0	43
9	Protonation-dependent heterogeneity in fluorescent binding sites in sub-fractions of fulvic acid using principle component analysis and two-dimensional correlation spectroscopy. Science of the Total Environment, 2018, 616-617, 1279-1287.	8.0	40
10	Spectroscopic analyses combined with Gaussian and Coats-Redfern models to investigate the characteristics and pyrolysis kinetics of sugarcane residue-derived biochars. Journal of Cleaner Production, 2019, 237, 117855.	9.3	40
11	Nonylphenol occurrence, distribution, toxicity and analytical methods in freshwater. Environmental Chemistry Letters, 2020, 18, 2095-2106.	16.2	35
12	Fluorescence regional integration and differential fluorescence spectroscopy for analysis of structural characteristics and proton binding properties of fulvic acid sub-fractions. Journal of Environmental Sciences, 2018, 74, 116-125.	6.1	34
13	Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer. Scientific Reports, 2015, 5, 8723.	3.3	30
14	Experimental and modeling study of proton and copper binding properties onto fulvic acid fractions using spectroscopic techniques combined with two-dimensional correlation analysis. Environmental Pollution, 2020, 256, 113465.	7.5	27
15	Simulated photo-degradation of dissolved organic matter in lakes revealed by three-dimensional excitation-emission matrix with regional integration and parallel factor analysis. Journal of Environmental Sciences, 2020, 90, 310-320.	6.1	24
16	Technical study on national mandatory guideline for deriving water quality criteria for the protection of freshwater aquatic organisms in China. Journal of Environmental Management, 2019, 250, 109539.	7.8	23
17	Fluorescence quenching of fulvic acids by fullerene in water. Environmental Pollution, 2013, 172, 100-107.	7.5	19
18	A QSAR–ICE–SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity. Environment International, 2022, 167, 107367.	10.0	19

#	Article	IF	CITATIONS
19	Dynamic Evolution and Covariant Response Mechanism of Volatile Organic Compounds and Residual Functional Groups during the Online Pyrolysis of Coal and Biomass Fuels. Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental Science	10.0	14
20	Relationship between fluorescence characteristics and molecular weight distribution of natural dissolved organic matter in Lake Hongfeng and Lake Baihua, China. Science Bulletin, 2006, 51, 89-96.	1.7	13
21	InÂvitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius). Environmental Pollution, 2021, 274, 116586.	7.5	13
22	Thermal degradation features of soil humic acid sub-fractions in pyrolytic treatment and their relation to molecular signatures. Science of the Total Environment, 2020, 749, 142318.	8.0	12
23	Ultraviolet absorbance titration for the determination of conditional stability constants of Hg(II) and dissolved organic matter. Diqiu Huaxue, 2008, 27, 46-52.	0.5	7
24	Photochemical Reactivity of Humic Substances in an Aquatic System Revealed by Excitation-Emission Matrix Fluorescence. Frontiers in Chemistry, 2021, 9, 679286.	3.6	4
25	A Review on the Water Quality Criteria of Nonylphenol and the Methodological Construction for Reproduction Toxicity Endocrine Disrupting Chemicals. Reviews of Environmental Contamination and Toxicology, 2022, 260, 1.	1.3	4
26	Polycyclic aromatic hydrocarbons induce endothelial injury through miRâ€155 to promote atherosclerosis. Environmental and Molecular Mutagenesis, 2021, 62, 409-421.	2.2	3
27	Molecular characteristics of biochar-derived organic matter sub-fractions extracted by ultrasonication. Science of the Total Environment, 2022, 806, 150190.	8.0	3
28	Thermal and spectral characterization of anaerobic thermal behavior patterns in a lacustrine sediment core. Environmental Science and Pollution Research, 2016, 23, 19949-19957.	5. 3	2
29	Correlations between slow pyrolysis characteristics and organic carbon structure of aquatic plant biomass. Environmental Science and Pollution Research, 2019, 26, 17555-17566.	5.3	2
30	Surface Activity of Humic Acid and Its Sub-Fractions from Forest Soil. Sustainability, 2021, 13, 8122.	3.2	2
31	General Challenges and Recommendations for the Water Quality Criteria of Endocrine Disrupting Chemicals (EDCs). Bulletin of Environmental Contamination and Toxicology, 2022, 108, 995-1000.	2.7	2
32	Investigation of eluted characteristics of fulvic acids using differential spectroscopy combined with Gaussian deconvolution and spectral indices. Environmental Science and Pollution Research, 2020, 27, 11000-11011.	5. 3	1