Radek StoÄek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8555015/publications.pdf Version: 2024-02-01

Ρληρκ δτοάεκ

#	Article	IF	CITATIONS
1	Facilitating high-temperature curing of natural rubber with a conventional accelerated-sulphur system using a synergistic combination of bismaleimides. EXPRESS Polymer Letters, 2021, 15, 16-27.	1.1	11
2	Influence of Ultraviolet Radiation on Mechanical Properties of a Photoinitiator Compounded High Vinyl Styrene–Butadiene–Styrene Block Copolymer. Polymers, 2021, 13, 1287.	2.0	4
3	Rheometer Evidences for the Co-Curing Effect of a Bismaleimide in Conjunction with the Accelerated Sulfur on Natural Rubber/Chloroprene Rubber Blends. Polymers, 2021, 13, 1510.	2.0	9
4	The Influence of Local Strain Distribution on the Effective Electrical Resistance of Carbon Black Filled Natural Rubber. Polymers, 2021, 13, 2411.	2.0	3
5	Cut & chip wear of rubbers in a range from low up to high severity conditions. Applied Surface Science Advances, 2021, 6, 100152.	2.9	6
6	Identifying the Co-Curing Effect of an Accelerated-Sulfur/Bismaleimide Combination on Natural Rubber/Halogenated Rubber Blends Using a Rubber Process Analyzer. Polymers, 2021, 13, 4329.	2.0	5
7	Reversion free high-temperature vulcanization of cis-polybutadiene rubber with the accelerated-sulfur system. EXPRESS Polymer Letters, 2020, 14, 823-837.	1.1	10
8	Fatigue Crack Growth vs. Chip and Cut Wear of NR and NR/SBR Blend-Based Rubber Compounds. Advances in Polymer Science, 2020, , 225-244.	0.4	6
9	The Effect of Polyglycols on the Fatigue Crack Growth of Silica-Filled Natural Rubber. Advances in Polymer Science, 2020, , 39-55.	0.4	2
10	Configuration of Novel Experimental Fractographic Reverse Engineering Approach Based on Relationship between Spectroscopy of Ruptured Surface and Fracture Behaviour of Rubber Sample. Materials, 2020, 13, 4445.	1.3	2
11	The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method. Advances in Polymer Science, 2020, , 57-83.	0.4	11
12	Determining Parametrical Functions Defining the Deformations of a Plane Strain Tensile Rubber Sample. Advances in Polymer Science, 2020, , 19-38.	0.4	9
13	Undesirable Aspects of Fatigue on Stretchable Elastomer Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 95-105.	0.2	2
14	Finite Element Modeling and Critical Plane Analysis of a Cut-and-Chip Experiment for Rubber. Tire Science and Technology, 2020, , .	0.3	5
15	Electrical conductivity degradation of fatigued carbon black reinforced natural rubber composites: Effects of carbon nanotubes and strain amplitudes. EXPRESS Polymer Letters, 2019, 13, 1116-1124.	1.1	10
16	An advanced method for calculation of infrared parameter to quantitatively identify rubber grade in a multi-component rubber blend. Polymer Testing, 2019, 73, 308-315.	2.3	10
17	Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Applied Nanoscience (Switzerland), 2019, 9, 899-906.	1.6	23
18	Characterisation of cut and chip behaviour for NR, SBR and BR compounds with an instrumented laboratory device. Plastics, Rubber and Composites, 2019, 48, 14-23.	0.9	8

Radek StoÄ**e**k

#	Article	IF	CITATIONS
19	Characterizing the Intrinsic Strength (Fatigue Threshold) of Natural Rubber/Butadiene Rubber Blends. Tire Science and Technology, 2019, 47, 292-307.	0.3	19
20	Smart numerical method for calculation of simple general infrared parameter identifying binary rubber blends. Polymer Testing, 2017, 57, 192-202.	2.3	5
21	Characterisation of ground tyre rubber by using combination of FT-IR numerical parameter and DTG analysis to determine the composition of ternary rubber blend. Polymer Testing, 2017, 59, 308-315.	2.3	17
22	Study of friction and wear of thermoplastic vulcanizates: the correlation with abraded surfaces topology. Journal of Physics: Conference Series, 2017, 843, 012070.	0.3	4
23	Influence of Thermal Ageing Process on the Crack Propagation of Rubber Used for Tire Application. Springer Series in Materials Science, 2017, , 351-364.	0.4	4
24	Tearing Energy as Fracture Mechanical Quantity for Elastomers. Advances in Polymer Science, 2016, , 361-398.	0.4	9
25	A Study of Correlation between Crack Initiation during Dynamic Wear Process and Fatigue Crack Growth of Reinforced Rubber Materials. Conference Papers in Science, 2015, 2015, 1-6.	0.3	1
26	Determination of compounding formulation of cured rubber by reverse engineering. Polymer Engineering and Science, 2015, 55, 1450-1458.	1.5	6
27	Dynamic behavior of short aramid fiberâ€filled elastomer composites. Polymer Engineering and Science, 2014, 54, 2958-2964.	1.5	13
28	Investigation of fatigue crack growth characteristics of NR/BR blend based tyre tread compounds. International Journal of Fracture, 2014, 188, 9-21.	1.1	49
29	Characterisation and micromechanical modelling of the elasto-viscoplastic behavior of thermoplastic elastomers. Mechanics of Materials, 2014, 71, 114-125.	1.7	15
30	Influence of "expanded clay―on the microstructure and fatigue crack growth behavior of carbon black filled NR composites. Composites Science and Technology, 2013, 76, 61-68.	3.8	57
31	Analysis of Dynamic Crack Propagation in Elastomers by Simultaneous Tensile- and Pure-Shear-Mode Testing. Lecture Notes in Applied and Computational Mechanics, 2013, , 269-301.	2.0	24