Patrick K Bowen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8554791/publications.pdf

Version: 2024-02-01

27 papers

2,936 citations

20 h-index 28 g-index

29 all docs 29 docs citations

29 times ranked 2346 citing authors

#	Article	IF	CITATIONS
1	Zinc Exhibits Ideal Physiological Corrosion Behavior for Bioabsorbable Stents. Advanced Materials, 2013, 25, 2577-2582.	11.1	656
2	Advances in Mg corrosion and research suggestions. Journal of Magnesium and Alloys, 2013, 1, 177-200.	5.5	397
3	Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Znâ€Alloys. Advanced Healthcare Materials, 2016, 5, 1121-1140.	3.9	326
4	Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Materials Science and Engineering C, 2015, 56, 467-472.	3.8	192
5	A simplified <i>in vivo</i> approach for evaluating the bioabsorbable behavior of candidate stent materials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 58-67.	1.6	158
6	Novel high-strength, low-alloys Zn-Mg (< 0.1 wt% Mg) and their arterial biodegradation. Materials Science and Engineering C, 2018, 84, 67-79.	3.8	155
7	In Vitro Cytotoxicity, Adhesion, and Proliferation of Human Vascular Cells Exposed to Zinc. ACS Biomaterials Science and Engineering, 2016, 2, 634-642.	2.6	136
8	Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1204-1215.	1.1	126
9	Evaluation of wrought Zn–Al alloys (1, 3, and 5 wt % Al) through mechanical and <i>in vivo</i> testing for stent applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 245-258.	1.6	93
10	Magnesium in the murine artery: Probing the products of corrosion. Acta Biomaterialia, 2014, 10, 1475-1483.	4.1	91
11	Vermiculite decorated with copper nanoparticles: Novel antibacterial hybrid material. Applied Surface Science, 2011, 257, 9435-9443.	3.1	83
12	Corrosion Characteristics Dictate the Long-Term Inflammatory Profile of Degradable Zinc Arterial Implants. ACS Biomaterials Science and Engineering, 2016, 2, 2355-2364.	2.6	72
13	Biocompatible curcumin loaded PMMA-PEG/ZnO nanocomposite induce apoptosis and cytotoxicity in human gastric cancer cells. Materials Science and Engineering C, 2017, 80, 59-68.	3.8	69
14	Rates of <i>in vivo</i> (arterial) and <i>in vitro</i> biocorrosion for pure magnesium. Journal of Biomedical Materials Research - Part A, 2015, 103, 341-349.	2.1	68
15	A new in vitro–in vivo correlation for bioabsorbable magnesium stents from mechanical behavior. Materials Science and Engineering C, 2013, 33, 5064-5070.	3.8	58
16	Importance of oxide film in endovascular biodegradable zinc stents. Surface Innovations, 2016, 4, 133-140.	1.4	45
17	Influence of Oxygen Concentration on the Performance of Ultra-Thin RF Magnetron Sputter Deposited Indium Tin Oxide Films as a Top Electrode for Photovoltaic Devices. Materials, 2016, 9, 63.	1.3	44
18	Tensile testing as a novel method for quantitatively evaluating bioabsorbable material degradation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2101-2113.	1.6	30

#	Article	IF	CITATIONS
19	New approaches in evaluating metallic candidates for bioabsorbable stents. Emerging Materials Research, 2012, 1, 237-255.	0.4	28
20	Rehydration/Rehydroxylation Kinetics of Reheated XIX-Century Davenport (Utah) Ceramic. Journal of the American Ceramic Society, 2011, 94, 2585-2591.	1.9	24
21	Hydrophobic nano-asperities in control of energy barrier during particle–surface interactions. Surface Innovations, 2015, 3, 164-171.	1.4	21
22	FIB-TEM Study of Magnesium Corrosion Products after 14 Days in the Murine Artery. ACS Biomaterials Science and Engineering, 2015, 1, 919-926.	2.6	17
23	Modeling Rehydration/Rehydroxylation Massâ€Gain Curves from Davenport Ceramics. Journal of the American Ceramic Society, 2013, 96, 885-891.	1.9	16
24	Reproducibility in Rehydroxylation of Ceramic Artifacts. Journal of the American Ceramic Society, 2015, 98, 3367-3372.	1.9	9
25	Inexpensive mineral copper materials with antibacterial surfaces. Surface Innovations, 2013, 1, 15-26.	1.4	8
26	Effect of Humidity Instability on Rehydroxylation in Fired Clay Ceramics. Journal of the American Ceramic Society, 2013, 96, 1047-1050.	1.9	7
27	Overview: Magnesium-Based Biodegradable Implants. Jom, 2016, 68, 1175-1176.	0.9	6