## Xiaoya Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8554712/publications.pdf Version: 2024-02-01



XIAOVA LIU

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bowl-Shaped Aggregates from the Self-Assembly of an Amphiphilic Random Copolymer of Poly(styrene-co-methacrylic acid). Macromolecules, 2005, 38, 6749-6751.                                                                                     | 4.8  | 147       |
| 2  | Efficient One-Pot Synthesis of Mussel-Inspired Molecularly Imprinted Polymer Coated Graphene for<br>Protein-Specific Recognition and Fast Separation. Journal of Physical Chemistry C, 2013, 117,<br>18448-18456.                               | 3.1  | 110       |
| 3  | Tannic acid functionalized graphene hydrogel for entrapping gold nanoparticles with high catalytic performance toward dye reduction. Journal of Hazardous Materials, 2015, 300, 615-623.                                                        | 12.4 | 104       |
| 4  | Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: A novel strategy for MIP sensors. Biosensors and Bioelectronics, 2011, 26, 2607-2612.                                                                   | 10.1 | 96        |
| 5  | In situ green synthesis of Au nanoparticles onto polydopamine-functionalized graphene for catalytic reduction of nitrophenol. RSC Advances, 2014, 4, 64816-64824.                                                                               | 3.6  | 95        |
| 6  | Pickering emulsions stabilized by self-assembled colloidal particles of copolymers of<br>P(St-alt-MAn)-co-P(VM-alt-MAn). Journal of Colloid and Interface Science, 2010, 351, 315-322.                                                          | 9.4  | 76        |
| 7  | A novel electrochemical sensor for paracetamol based on molecularly imprinted polymeric micelles.<br>Sensors and Actuators B: Chemical, 2013, 188, 909-916.                                                                                     | 7.8  | 72        |
| 8  | Synthesis of hydrophilic and conductive molecularly imprinted polyaniline particles for the sensitive and selective protein detection. Biosensors and Bioelectronics, 2017, 94, 39-46.                                                          | 10.1 | 63        |
| 9  | Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for<br>ultrasensitive detection of carcino-embryonic antigen. Biosensors and Bioelectronics, 2017, 92,<br>570-576.                           | 10.1 | 60        |
| 10 | Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection. ACS Applied Materials & amp; Interfaces, 2016, 8, 21028-21038.                                          | 8.0  | 57        |
| 11 | Dual-responsive poly(styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide) micelles as switchable<br>emulsifiers. Journal of Colloid and Interface Science, 2012, 380, 90-98.                                                             | 9.4  | 56        |
| 12 | Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection. Biosensors and Bioelectronics, 2018, 100, 497-503.                                                                    | 10.1 | 56        |
| 13 | Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance. Acta Biomaterialia, 2016, 45, 387-398.                                                                     | 8.3  | 53        |
| 14 | A facile approach for imprinting protein on the surface of multi-walled carbon nanotubes. Talanta, 2014, 120, 76-83.                                                                                                                            | 5.5  | 52        |
| 15 | Photoinduced Morphology Switching of Polymer Nanoaggregates in Aqueous Solution. Langmuir, 2010, 26, 14247-14254.                                                                                                                               | 3.5  | 51        |
| 16 | Self-Assembly of Mixtures of Block Copolymers of Poly(styrene-b-acrylic acid) with Random Copolymers of Poly(styrene-co-methacrylic acid). Langmuir, 2006, 22, 419-424.                                                                         | 3.5  | 47        |
| 17 | Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin. Mikrochimica Acta, 2015, 182, 175-183.                                                                                         | 5.0  | 44        |
| 18 | Necklace-like Molecularly Imprinted Nanohybrids Based on Polymeric Nanoparticles Decorated<br>Multiwalled Carbon Nanotubes for Highly Sensitive and Selective Melamine Detection. ACS Applied<br>Materials & Interfaces, 2018, 10, 24850-24859. | 8.0  | 44        |

Χιάογα Liu

| #  | Article                                                                                                                                                                                                                                                     | IF          | CITATIONS     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 19 | A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and<br>with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol.<br>Mikrochimica Acta, 2016, 183, 1543-1551.          | 5.0         | 41            |
| 20 | Facile one-step fabrication of glucose oxidase loaded polymeric nanoparticles decorating MWCNTs for constructing glucose biosensing platform: Structure matters. Biosensors and Bioelectronics, 2019, 135, 153-159.                                         | 10.1        | 37            |
| 21 | A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer<br>for voltammetric determination of dopamine, paracetamol and uric acid. Mikrochimica Acta, 2017, 184,<br>1739-1745.                                     | 5.0         | 36            |
| 22 | Water-dispersible molecularly imprinted nanohybrids via co-assembly of carbon nanotubes with<br>amphiphilic copolymer and photocrosslinking for highly sensitive and selective paracetamol<br>detection. Biosensors and Bioelectronics, 2018, 117, 713-719. | 10.1        | 35            |
| 23 | Influence of Photo-Cross-Linking on Emulsifying Performance of the Self-Assemblies of<br>Poly(7-(4-vinylbenzyloxyl)-4-methylcoumarin- <i>co</i> -acrylic acid). Langmuir, 2014, 30, 6669-6677.                                                              | 3.5         | 34            |
| 24 | Electrochemical protein recognition based on macromolecular self-assembly of molecularly<br>imprinted polymer: a new strategy to mimic antibody for label-free biosensing. Journal of Materials<br>Chemistry B, 2019, 7, 2311-2319.                         | 5.8         | 32            |
| 25 | Self-assembly and emulsification of dopamine-modified hyaluronan. Carbohydrate Polymers, 2015, 123, 72-79.                                                                                                                                                  | 10.2        | 30            |
| 26 | Silver Nanoparticle-Enzyme Composite Films for Hydrogen Peroxide Detection. ACS Applied Nano<br>Materials, 2019, 2, 5910-5921.                                                                                                                              | 5.0         | 29            |
| 27 | Green Synthesis of Water-Compatible Fluorescent Molecularly Imprinted Polymeric Nanoparticles for Efficient Detection of Paracetamol. ACS Sustainable Chemistry and Engineering, 2018, 6, 9760-9770.                                                        | 6.7         | 28            |
| 28 | Molecularly imprinted nanohybrids based on dopamine-modified poly(γ-glutamic acid) for electrochemical sensing of melamine. Biosensors and Bioelectronics, 2016, 85, 381-386.                                                                               | 10.1        | 25            |
| 29 | Hierarchical 0D-2D bio-composite film based on enzyme-loaded polymeric nanoparticles decorating graphene nanosheets as a high-performance bio-sensing platform. Biosensors and Bioelectronics, 2020, 156, 112134.                                           | 10.1        | 25            |
| 30 | Reduced Graphene Oxide-Coated Silica Nanospheres as Flexible Enzymatic Biosensors for Detection of<br>Glucose in Sweat. ACS Applied Nano Materials, 2021, 4, 12442-12452.                                                                                   | 5.0         | 24            |
| 31 | Paracetamol Sensor Based on Molecular Imprinting by Photosensitive Polymers. Electroanalysis, 2013, 25, 1907-1916.                                                                                                                                          | 2.9         | 23            |
| 32 | Dispersion of carbon nanotubes in water by self-assembled micelles of branched amphiphilic<br>multifunctional copolymers with photosensitivity and electroactivity. Journal of Materials Chemistry<br>A, 2014, 2, 14481-14492.                              | 10.3        | 23            |
| 33 | One-Step Electrodeposition of Self-Assembled Colloidal Particles: A Novel Strategy for Biomedical<br>Coating. Langmuir, 2014, 30, 11002-11010.                                                                                                              | 3.5         | 22            |
| 34 | Preparation of photo-crosslinked aliphatic polycarbonate coatings with predictable degradation behavior on magnesium-alloy stents by electrophoretic deposition. Chemical Engineering Journal, 2022, 427, 131596.                                           | 12.7        | 22            |
| 35 | Controlled release and corrosion protection by self-assembled colloidal particles electrodeposited onto magnesium alloys. Journal of Materials Chemistry B, 2015, 3, 1667-1676.                                                                             | 5.8         | 20            |
| 36 | Effect of chain microstructure on self-assembly and emulsification of amphiphilic poly(acrylic) Tj ETQq0 0 0 rgB                                                                                                                                            | T /Overlock | 10 Tf 50 62 1 |

3

Χιάογα Liu

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Self-assembled micelles based on branched poly(styrene-alt-maleic anhydride) as particulate<br>emulsifiers. RSC Advances, 2015, 5, 1564-1570.                                                                                              | 3.6  | 18        |
| 38 | A novel flexible UV-cured carbon nanotube composite film for humidity sensing. Sensors and Actuators B: Chemical, 2019, 297, 126785.                                                                                                       | 7.8  | 18        |
| 39 | A Temperatureâ€Responsive Boronate Core Cross‣inked Star (CCS) Polymer for Fast and Highly Efficient<br>Enrichment of Glycoproteins. Small, 2019, 15, e1900099.                                                                            | 10.0 | 18        |
| 40 | Long Conducting and Water-Compatible Polymer/Carbon Nanotubes Nanocomposite with<br>"Beads-on-a-String―Structure as a Highly Effective Electrochemical Sensing Material. ACS Sustainable<br>Chemistry and Engineering, 2019, 7, 3556-3566. | 6.7  | 17        |
| 41 | "Olive-Structured―Nanocomposite Based on Multiwalled Carbon Nanotubes Decorated with an<br>Electroactive Copolymer for Environmental Nitrite Detection. ACS Sustainable Chemistry and<br>Engineering, 2019, 7, 17424-17431.                | 6.7  | 16        |
| 42 | A fabrication strategy for protein sensors based on an electroactive molecularly imprinted polymer:<br>Cases of bovine serum albumin and trypsin sensing. Analytica Chimica Acta, 2020, 1117, 25-34.                                       | 5.4  | 16        |
| 43 | Multiwalled carbon nanotubes noncovalently functionalized by electro-active amphiphilic copolymer micelles for selective dopamine detection. RSC Advances, 2015, 5, 18233-18241.                                                           | 3.6  | 15        |
| 44 | Liquid–liquid interfacial behavior of dopamine modified poly(γ-glutamic acid) polymer. Colloids and<br>Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 218-223.                                                            | 4.7  | 15        |
| 45 | Fluorescent molecularly imprinted nanoparticles with boronate affinity for selective glycoprotein detection. Journal of Materials Chemistry B, 2020, 8, 6469-6480.                                                                         | 5.8  | 15        |
| 46 | Photo-Cross-Linked Polycarbonate Coating with Surface-Erosion Behavior for Corrosion Resistance<br>and Cytocompatibility Enhancement of Magnesium Alloy. ACS Applied Bio Materials, 2020, 3, 4427-4435.                                    | 4.6  | 14        |
| 47 | Zwitterionic-Based Surface via the Coelectrodeposition of Colloid Particles and Tannic Acid with<br>Bacterial Resistance but Cell Adhesion Properties. ACS Biomaterials Science and Engineering, 2018, 4,<br>4122-4131.                    | 5.2  | 13        |
| 48 | Preparation of molecularly imprinted polymer/Au nanohybrids as an effective biosensing material.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 95-102.                                                   | 4.7  | 13        |
| 49 | Screen-Printed Carbon Electrodes Modified with Polymeric Nanoparticle-Carbon Nanotube<br>Composites for Enzymatic Biosensing. ACS Applied Nano Materials, 2020, 3, 9158-9166.                                                              | 5.0  | 13        |
| 50 | Pickering emulsions stabilized by self-assembled colloidal particles of amphiphilic branched random<br>poly(styrene- co -acrylic acid). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015,<br>487, 58-65.             | 4.7  | 11        |
| 51 | Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 5926-5932.                                                                      | 8.0  | 11        |
| 52 | Dextran-caffeic acid/tetraaniline composite coatings for simultaneous improvement of<br>cytocompatibility and corrosion resistance of magnesium alloy. Progress in Organic Coatings, 2020,<br>149, 105928.                                 | 3.9  | 11        |
| 53 | Facile fabrication of biodegradable endothelium-mimicking coatings on bioabsorbable zinc-alloy<br>stents by one-step electrophoretic deposition. Journal of Materials Chemistry B, 2022, 10, 3083-3096.                                    | 5.8  | 11        |
| 54 | Polymeric nanoparticles-based multi-functional coatings on NiTi alloy with nickel ion release<br>control, cytocompatibility, and antibacterial performance. New Journal of Chemistry, 2019, 43,<br>1551-1561.                              | 2.8  | 10        |

Χιάογα Liu

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Colloidal particle based electrodeposition coatings on NiTi alloy: Reduced releasing of nickel ions and improved biocompatibility. Materials Letters, 2018, 230, 228-231.                                                         | 2.6 | 9         |
| 56 | Gold nanoparticles for smart and recoverable catalyst using thermo-responsive core-crosslinked star polymer as the nanoreactor. Applied Surface Science, 2020, 507, 144950.                                                       | 6.1 | 9         |
| 57 | Aqueous Dispersions of Carbon Nanotubes with Self-assembled Micelles of Photosensitive Amphiphilic Random Copolymer Containing Coumarin. Chemistry Letters, 2012, 41, 50-52.                                                      | 1.3 | 7         |
| 58 | Preparation and electrochemical application of an <scp>AgNW</scp> /graphene/ <scp>SU</scp> â€8<br>composite conductive photoresist. Journal of Applied Polymer Science, 2021, 138, 51205.                                         | 2.6 | 6         |
| 59 | Research on Amphiphilic Copolymer MIP Micelles Electrochemical Sensor. Acta Chimica Sinica, 2013, 71, 934.                                                                                                                        | 1.4 | 6         |
| 60 | An electro-active amphiphilic copolymer to functionalize carbon nanotubes for highly sensitive determination of nitrite in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 576, 123-129.           | 4.7 | 5         |
| 61 | Core cross-linked and pH-responsive particulate emulsifiers from direct chemical preparation of divinylbenzene with P(AA- r -St) macro-CTA. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 358-366. | 4.7 | 4         |
| 62 | Photosensitive acrylate copolymer for electrodeposition photoresist. Polymer Science - Series A, 2013, 55, 225-232.                                                                                                               | 1.0 | 3         |