
## **Dehong Chen**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8554223/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Crystal Facet Engineering of Singleâ€Crystalline TiC Nanocubes for Improved Hydrogen Evolution<br>Reaction. Advanced Functional Materials, 2021, 31, 2008028.                                                                                                                   | 14.9 | 17        |
| 2  | Hierarchically Porous WO <sub>3</sub> /CdWO <sub>4</sub> Fiber-in-Tube Nanostructures Featuring<br>Readily Accessible Active Sites and Enhanced Photocatalytic Effectiveness for Antibiotic Degradation<br>in Water. ACS Applied Materials & Interfaces, 2021, 13, 21138-21148. | 8.0  | 64        |
| 3  | Rollâ€ŧoâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar<br>Rrl, 2021, 5, 2100341.                                                                                                                                                | 5.8  | 22        |
| 4  | Use of metamodels for rapid discovery of narrow bandgap oxide photocatalysts. IScience, 2021, 24, 103068.                                                                                                                                                                       | 4.1  | 17        |
| 5  | Fluoride Perovskite (KNi <sub><i>x</i></sub> Co <sub>1–<i>x</i></sub> F <sub>3</sub> )<br>Oxygen-Evolution Electrocatalyst with Highly Polarized Electronic Configuration. ACS Applied<br>Energy Materials, 2021, 4, 13425-13430.                                               | 5.1  | 12        |
| 6  | Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.                                                                                                                    | 38.1 | 97        |
| 7  | Trace-Level Fluorination of Mesoporous TiO <sub>2</sub> Improves Photocatalytic and Pb(II)<br>Adsorbent Performances. Inorganic Chemistry, 2020, 59, 17631-17637.                                                                                                               | 4.0  | 9         |
| 8  | The influence of ruthenium substitution in LaCoO <sub>3</sub> towards bi-functional<br>electrocatalytic activity for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8,<br>20612-20620.                                                                  | 10.3 | 32        |
| 9  | Advancing Metalâ€Organic Frameworks toward Smart Sensing: Enhanced Fluorescence by a Photonic<br>Metalâ€Organic Framework for Organic Vapor Sensing. Advanced Optical Materials, 2020, 8, 2000961.                                                                              | 7.3  | 36        |
| 10 | Low-Temperature Solution-Processed Amorphous Titania Nanowire Thin Films for 1 cm <sup>2</sup><br>Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 11450-11458.                                                                                            | 8.0  | 9         |
| 11 | Ordered Mesoporous Graphitic Carbon/Iron Carbide Composites with High Porosity as a Sulfur Host<br>for Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 13194-13204.                                                                                               | 8.0  | 34        |
| 12 | Tricomponent brookite/anatase TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> heterojunction in<br>mesoporous hollow microspheres for enhanced visible-light photocatalysis. Journal of Materials<br>Chemistry A, 2018, 6, 7236-7245.                                         | 10.3 | 74        |
| 13 | Solution-processed Zn2SnO4 electron transporting layer for efficient planar perovskite solar cells.<br>Materials Today Energy, 2018, 7, 260-266.                                                                                                                                | 4.7  | 30        |
| 14 | Enhanced Photoelectrochemical Performances in Flexible Mesoscopic Solar Cells: An Effective<br>Lightâ€ <b>S</b> cattering Material. ChemPhotoChem, 2018, 2, 986-993.                                                                                                            | 3.0  | 5         |
| 15 | Enhanced Electrochromic Properties of WO <sub>3</sub> Nanotree-like Structures Synthesized via a<br>Two-Step Solvothermal Process Showing Promise for Electrochromic Window Application. ACS<br>Applied Nano Materials, 2018, 1, 2552-2558.                                     | 5.0  | 84        |
| 16 | The Formation of Defectâ€Pairs for Highly Efficient Visibleâ€Light Catalysts. Advanced Materials, 2017, 29,<br>1605123.                                                                                                                                                         | 21.0 | 43        |
| 17 | Monodisperse anatase titania microspheres with high-thermal stability and large pore size (â^¼80 nm) as<br>efficient photocatalysts. Journal of Materials Chemistry A, 2017, 5, 3645-3654.                                                                                      | 10.3 | 26        |
| 18 | Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO <sub>2</sub> .<br>Journal of Materials Chemistry A, 2017, 5, 5436-5441.                                                                                                                      | 10.3 | 123       |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recent progress in hybrid perovskite solar cells based on n-type materials. Journal of Materials<br>Chemistry A, 2017, 5, 10092-10109.                                                                                                                                        | 10.3 | 136       |
| 20 | Integrated planar and bulk dual heterojunctions capable of efficient electron and hole extraction for perovskite solar cells with >17% efficiency. Nano Energy, 2017, 32, 187-194.                                                                                            | 16.0 | 23        |
| 21 | Mesoporous TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> Microspheres with Enhanced<br>Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C, 2017, 121, 22114-22122.                                                                                    | 3.1  | 118       |
| 22 | High Reversible Pseudocapacity in Mesoporous Yolk–Shell Anatase<br>TiO <sub>2</sub> /TiO <sub>2</sub> (B) Microspheres Used as Anodes for Liâ€ <del>i</del> on Batteries. Advanced<br>Functional Materials, 2017, 27, 1703270.                                                | 14.9 | 99        |
| 23 | Colossal permittivity behavior and its origin in rutile (Mg1/3Ta2/3)xTi1-xO2. Scientific Reports, 2017, 7, 9950.                                                                                                                                                              | 3.3  | 60        |
| 24 | Thin Films of Tin Oxide Nanosheets Used as the Electron Transporting Layer for Improved Performance and Ambient Stability of Perovskite Photovoltaics. Solar Rrl, 2017, 1, 1700117.                                                                                           | 5.8  | 69        |
| 25 | Three-dimensional titanium oxide nanoarrays for perovskite photovoltaics: surface engineering for cascade charge extraction and beneficial surface passivation. Sustainable Energy and Fuels, 2017, 1, 1960-1967.                                                             | 4.9  | 13        |
| 26 | Solvent-Mediated Intragranular-Coarsening of CH <sub>3</sub> NH <sub>3</sub> PbI <sub>3</sub> Thin<br>Films toward High-Performance Perovskite Photovoltaics. ACS Applied Materials & Interfaces,<br>2017, 9, 31959-31967.                                                    | 8.0  | 23        |
| 27 | Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magnéli<br>Ti <sub>4</sub> O <sub>7</sub> Microspheres for Highâ€Performance Li–S Battery. Advanced Energy<br>Materials, 2017, 7, 1601616.                                                                     | 19.5 | 130       |
| 28 | Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates.<br>ChemSusChem, 2016, 9, 687-695.                                                                                                                                       | 6.8  | 101       |
| 29 | N-doped Li <sub>4</sub> Ti <sub>5</sub> O <sub>12</sub> nanoflakes derived from 2D protonated titanate for high performing anodes in lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 7772-7780.                                                             | 10.3 | 39        |
| 30 | Mesoporous Nitrogenâ€Modified Titania with Enhanced Dye Adsorption Capacity and Visible Light<br>Photocatalytic Activity. ChemistrySelect, 2016, 1, 4868-4878.                                                                                                                | 1.5  | 20        |
| 31 | Sub-100°C solution processed amorphous titania nanowire thin films for high-performance perovskite solar cells. Journal of Power Sources, 2016, 329, 17-22.                                                                                                                   | 7.8  | 14        |
| 32 | Optimizing semiconductor thin films with smooth surfaces and well-interconnected networks for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 12463-12470.                                                                                | 10.3 | 28        |
| 33 | Enhanced electrochromic performance of WO <sub>3</sub> nanowire networks grown directly on fluorine-doped tin oxide substrates. Journal of Materials Chemistry C, 2016, 4, 10500-10508.                                                                                       | 5.5  | 60        |
| 34 | Perovskite Solar Cells: Solventâ€Mediated Dimension Tuning of Semiconducting Oxide Nanostructures<br>as Efficient Charge Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16%<br>(Adv. Energy Mater. 7/2016). Advanced Energy Materials, 2016, 6, . | 19.5 | 0         |
| 35 | Solventâ€Mediated Dimension Tuning of Semiconducting Oxide Nanostructures as Efficient Charge<br>Extraction Thin Films for Perovskite Solar Cells with Efficiency Exceeding 16%. Advanced Energy<br>Materials, 2016, 6, 1502027.                                              | 19.5 | 52        |
| 36 | Flowerlike WSe <sub>2</sub> and WS <sub>2</sub> microspheres: one-pot synthesis, formation<br>mechanism and application in heavy metal ion sequestration. Chemical Communications, 2016, 52,<br>4481-4484.                                                                    | 4.1  | 81        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites.<br>Environmental Science: Nano, 2016, 3, 94-106.                                                                                                                  | 4.3  | 123       |
| 38 | Chapter 7. Controlling the Photoanode Mesostructure for Dye-sensitized and Perovskite-sensitized Solar Cells. , 2016, , 292-323.                                                                                                                               |      | 0         |
| 39 | The Effect of the Scattering Layer in Dyeâ€Sensitized Solar Cells Employing a Cobaltâ€Based Aqueous Gel<br>Electrolyte. ChemSusChem, 2015, 8, 3704-3711.                                                                                                       | 6.8  | 23        |
| 40 | Temperature-induced modulation of mesopore size in hierarchically porous amorphous<br>TiO <sub>2</sub> /ZrO <sub>2</sub> beads for improved dye adsorption capacity. Journal of Materials<br>Chemistry A, 2015, 3, 3768-3776.                                  | 10.3 | 26        |
| 41 | Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Holeâ€Blocking and Efficient<br>Lightâ€Harvesting for Highâ€Performance Mesoscopic Perovskite Solar Cells. Advanced Functional<br>Materials, 2015, 25, 3264-3272.                           | 14.9 | 101       |
| 42 | Monodisperse mesoporous anatase beads as high performance and safer anodes for lithium ion batteries. Nanoscale, 2015, 7, 17947-17956.                                                                                                                         | 5.6  | 21        |
| 43 | Glucose-assisted synthesis of the hierarchical TiO <sub>2</sub> nanowire@MoS <sub>2</sub><br>nanosheet nanocomposite and its synergistic lithium storage performance. Journal of Materials<br>Chemistry A, 2015, 3, 2762-2769.                                 | 10.3 | 142       |
| 44 | Effect of cosolvents on the self-assembly of a non-ionic polyethylene oxide–polypropylene<br>oxide–polyethylene oxide block copolymer in the protic ionic liquid ethylammonium nitrate. Journal<br>of Colloid and Interface Science, 2015, 441, 46-51.         | 9.4  | 7         |
| 45 | Effect of TiO <sub>2</sub> microbead pore size on the performance of DSSCs with a cobalt based electrolyte. Nanoscale, 2014, 6, 13787-13794.                                                                                                                   | 5.6  | 19        |
| 46 | Understanding Solvothermal Crystallization of Mesoporous Anatase Beads by In Situ Synchrotron PXRD and SAXS. Chemistry of Materials, 2014, 26, 4563-4571.                                                                                                      | 6.7  | 37        |
| 47 | Charge Transport in Photoanodes Constructed with Mesoporous TiO <sub>2</sub> Beads for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16635-16642.                                                                                    | 3.1  | 8         |
| 48 | Hierarchically Porous Titania Networks with Tunable Anatase:Rutile Ratios and Their Enhanced<br>Photocatalytic Activities. ACS Applied Materials & Interfaces, 2014, 6, 13129-13137.                                                                           | 8.0  | 73        |
| 49 | Mesoporous titania beads for flexible dye-sensitized solar cells. Journal of Materials Chemistry C, 2014, 2, 1284-1289.                                                                                                                                        | 5.5  | 16        |
| 50 | Versatile inorganic-organic hybrid WO x -ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis. Nano Research, 2014, 7, 903-916.                                                                         | 10.4 | 59        |
| 51 | Surfaceâ€Metastable Phaseâ€Initiated Seeding and Ostwald Ripening: A Facile Fluorineâ€Free Process<br>towards Spherical Fluffy Core/Shell, Yolk/Shell, and Hollow Anatase Nanostructures. Angewandte<br>Chemie - International Edition, 2013, 52, 10986-10991. | 13.8 | 99        |
| 52 | Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dyes and<br>Pigments, 2013, 98, 106-112.                                                                                                                             | 3.7  | 64        |
| 53 | Mesoporous Titanium Zirconium Oxide Nanospheres with Potential for Drug Delivery Applications.<br>ACS Applied Materials & Interfaces, 2013, 5, 10926-10932.                                                                                                    | 8.0  | 43        |
| 54 | Engineering of Monodisperse Mesoporous Titania Beads for Photocatalytic Applications. ACS Applied<br>Materials & Interfaces, 2013, 5, 9421-9428.                                                                                                               | 8.0  | 49        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications.<br>Advanced Functional Materials, 2013, 23, 1356-1374.                                                                             | 14.9 | 195       |
| 56 | Amine-Functionalized Titania-based Porous Structures for Carbon Dioxide Postcombustion Capture.<br>Journal of Physical Chemistry C, 2013, 117, 9747-9757.                                                                       | 3.1  | 28        |
| 57 | Enhanced Photocatalytic Activity: Macroporous Electrospun Mats of Mesoporous<br>Au/TiO <sub>2</sub> Nanofibers. ChemCatChem, 2013, 5, 2646-2654.                                                                                | 3.7  | 28        |
| 58 | Construction of nanostructured electrodes on flexible substrates using pre-treated building blocks.<br>Applied Physics Letters, 2012, 100, .                                                                                    | 3.3  | 31        |
| 59 | Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity. Chemical Communications, 2012, 48, 9885.                                                                      | 4.1  | 60        |
| 60 | Spiky Mesoporous Anatase Titania Beads: A Metastable Ammonium Titanateâ€Mediated Synthesis.<br>Chemistry - A European Journal, 2012, 18, 13762-13769.                                                                           | 3.3  | 27        |
| 61 | Facile Synthesis of Monodisperse Mesoporous Zirconium Titanium Oxide Microspheres with Varying<br>Compositions and High Surface Areas for Heavy Metal Ion Sequestration. Advanced Functional<br>Materials, 2012, 22, 1966-1971. | 14.9 | 73        |
| 62 | Flexible dye-sensitized solar cells containing multiple dyes in discrete layers. Energy and Environmental Science, 2011, 4, 2803.                                                                                               | 30.8 | 41        |
| 63 | Noble Metalâ€Modified Porous Titania Networks and their Application as Photocatalysts. ChemCatChem, 2011, 3, 1763-1771.                                                                                                         | 3.7  | 28        |
| 64 | Effect of Mesoporous TiO2 Bead Diameter in Working Electrodes on the Efficiency of Dye-Sensitized Solar Cells. ChemSusChem, 2011, 4, 1498-1503.                                                                                 | 6.8  | 40        |
| 65 | Dualâ€Function Scattering Layer of Submicrometer‣ized Mesoporous TiO <sub>2</sub> Beads for<br>Highâ€Efficiency Dye‣ensitized Solar Cells. Advanced Functional Materials, 2010, 20, 1301-1305.                                  | 14.9 | 385       |
| 66 | Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO <sub>2</sub> Beads Achieve<br>Power Conversion Efficiencies Over 10%. ACS Nano, 2010, 4, 4420-4425.                                                        | 14.6 | 412       |
| 67 | Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas,<br>and Variable Pore Diameters (14â^23 nm). Journal of the American Chemical Society, 2010, 132, 4438-4444.                  | 13.7 | 405       |
| 68 | Mesoporous Anatase TiO <sub>2</sub> Beads with High Surface Areas and Controllable Pore Sizes: A<br>Superior Candidate for Highâ€Performance Dyeâ€Sensitized Solar Cells. Advanced Materials, 2009, 21,<br>2206-2210.           | 21.0 | 926       |
| 69 | Mesoporous Fe2O3 microspheres: Rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. Journal of Colloid and Interface Science, 2008, 318, 315-321.                                                       | 9.4  | 69        |
| 70 | Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon, 2007, 45, 1757-1763.                                                            | 10.3 | 330       |
| 71 | Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochemistry Communications, 2007, 9, 569-573.                                                   | 4.7  | 255       |
| 72 | Synthesis and phase behaviors of bicontinuous cubic mesoporous silica from triblock copolymer mixed anionic surfactant. Microporous and Mesoporous Materials, 2007, 105, 34-40.                                                 | 4.4  | 26        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. Journal of Materials Chemistry, 2006, 16, 1511.                                                   | 6.7  | 130       |
| 74 | Highly Ordered Mesoporous Silicon Carbide Ceramics with Large Surface Areas and High Stability.<br>Advanced Functional Materials, 2006, 16, 561-567.                                                                        | 14.9 | 199       |
| 75 | Synthesis of Large-Pore Periodic Mesoporous Organosilica (PMO) with Bicontinuous Cubic Structure ofla–3dSymmetry. Chemistry Letters, 2005, 34, 182-183.                                                                     | 1.3  | 24        |
| 76 | Titania and Mixed Titania/Aluminum, Gallium, or Indium Oxide Spheres: Sol-Gel/Template Synthesis and<br>Photocatalytic Properties. Advanced Functional Materials, 2005, 15, 239-245.                                        | 14.9 | 82        |
| 77 | Nonionic Block Copolymer and Anionic Mixed Surfactants Directed Synthesis of Highly Ordered<br>Mesoporous Silica with Bicontinuous Cubic Structure. Chemistry of Materials, 2005, 17, 3228-3234.                            | 6.7  | 91        |
| 78 | Micrometer-to-Nanometer Replication of Hierarchical Structures by Using a Surface Sol–Gel Process.<br>Angewandte Chemie - International Edition, 2004, 43, 2746-2748.                                                       | 13.8 | 96        |
| 79 | An Easy Route for the Synthesis of Ordered Three-Dimensional Large-Pore Mesoporous Organosilicas withIm-3mSymmetry. Chemistry Letters, 2004, 33, 1132-1133.                                                                 | 1.3  | 12        |
| 80 | Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. Powder Technology, 2003, 133, 247-250.                                                                                                  | 4.2  | 90        |
| 81 | Inorganic Macroporous Films from Preformed Nanoparticles and Membrane Templates: Synthesis and<br>Investigation of Photocatalytic and Photoelectrochemical Properties. Advanced Functional<br>Materials, 2003, 13, 789-794. | 14.9 | 102       |
| 82 | Hollow-structured hematite particles derived from layered iron (hydro)oxyhydroxide–surfactant<br>composites. Journal of Materials Chemistry, 2003, 13, 2266-2270.                                                           | 6.7  | 53        |
| 83 | Preparation and characteristics of sol–gel derived Zn2SiO4 doped with Ni2+. Inorganic Chemistry<br>Communication, 2002, 5, 482-486.                                                                                         | 3.9  | 19        |
| 84 | Solvothermal synthesis of α-Fe2O3 particles with different morphologies. Materials Research Bulletin,<br>2001, 36, 1057-1064.                                                                                               | 5.2  | 32        |