Rafael Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8554215/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of III-nitrides on Si(111) by molecular beam epitaxy Doping, optical, and electrical properties. Journal of Crystal Growth, 1999, 201-202, 296-317.	0.7	189
2	Influence of buffer-layer surface morphology on the self-organized growth of InAs on InP(001) nanostructures. Applied Physics Letters, 2000, 76, 1104-1106.	1.5	133
3	Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water. Reactivity of Solids, 1987, 4, 23-40.	0.3	129
4	Study of some aspects of the reactivity of La2O3 with CO2 and H2O. Journal of Materials Science, 1985, 20, 537-541.	1.7	103
5	Thermal evolution of a sample of La2O3 exposed to the atmosphere. Thermochimica Acta, 1983, 66, 139-145.	1.2	74
6	Design of InGaAs linear graded buffer structures. Applied Physics Letters, 1995, 66, 3334-3336.	1.5	70
7	Flame Spray Pyrolysis of Precursors as a Route to Nanoâ€mullite Powder: Powder Characterization and Sintering Behavior. Journal of the American Ceramic Society, 2001, 84, 951-961.	1.9	69
8	Determination of the composition of InxGa1â^'xN from strain measurements. Acta Materialia, 2009, 57, 5681-5692.	3.8	65
9	Microstructural study of CO2 laser machined heat affected zone of 2024 aluminum alloy. Applied Surface Science, 2003, 208-209, 210-217.	3.1	58
10	The effect of Si doping on the defect structure of GaN/AlN/Si(111). Applied Physics Letters, 1999, 74, 3362-3364.	1.5	55
11	Strain relief in linearly graded composition buffer layers: A design scheme to grow dislocationâ€free (<105cmâ^²2) and unstrained epilayers. Applied Physics Letters, 1994, 65, 2460-2462.	1.5	47
12	Comparison of the crystalline quality of step-graded and continuously graded InGaAs buffer layers. Journal of Crystal Growth, 1996, 169, 649-659.	0.7	44
13	Characterisation of rare earth oxide supported metal catalysts. Study of some ceria supported rhodium phases. Catalysis Today, 1988, 2, 653-662.	2.2	43
14	Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range. Applied Physics Letters, 2015, 106, .	1.5	43
15	Cubic InN growth on sapphire (0001) using cubic indium oxide as buffer layer. Applied Physics Letters, 2007, 90, 091901.	1.5	37
16	Fatigue behaviour of laser machined 2024 T3 aeronautic aluminium alloy. Applied Surface Science, 2003, 208-209, 194-198.	3.1	35
17	Misfit relaxation of InN quantum dots: Effect of the GaN capping layer. Applied Physics Letters, 2006, 88, 151913.	1.5	35
18	Nucleation of InN quantum dots on GaN by metalorganic vapor phase epitaxy. Applied Physics Letters, 2005, 87, 263104.	1.5	28

#	Article	IF	CITATIONS
19	Structural and compositional homogeneity of InAlN epitaxial layers nearly lattice-matched to GaN. Acta Materialia, 2010, 58, 4120-4125.	3.8	26
20	Stem and microdiffraction studies of Rh/CeO2. Micron and Microscopica Acta, 1987, 18, 165-169.	0.2	25
21	Size-filtering effects by stacking InAs/InP (001) self-assembled quantum wires into multilayers. Physical Review B, 2002, 65, .	1.1	25
22	Structural and optical characterization of Mg-doped GaAs nanowires grown on GaAs and Si substrates. Journal of Applied Physics, 2013, 114, .	1.1	25
23	Direct Measurement of Polarization-Induced Fields in GaN/AlN by Nano-Beam Electron Diffraction. Scientific Reports, 2016, 6, 28459.	1.6	25
24	Preparation of lanthana supported rhodium catalysts. Occurrence of heavy carbonation phenomena on the support Applied Catalysis, 1987, 31, 267-273.	1.1	22
25	Atomic scale high-angle annular dark field STEM analysis of the N configuration in dilute nitrides of GaAs. Physical Review B, 2009, 80, .	1.1	22
26	Growth mechanism and electronic properties of epitaxial In2O3films on sapphire. Journal of Applied Physics, 2011, 110, 093712.	1.1	22
27	Characterization of an experimental TPD—MS system. Quantitative calibrations. Thermochimica Acta, 1983, 70, 249-256.	1.2	21
28	Stranski-Krastanov InN/InGaN quantum dots grown directly on Si(111). Applied Physics Letters, 2015, 106, .	1.5	21
29	MBE growth of GaN and AlGaN layers on Si(111) substrates: doping effects. Journal of Crystal Growth, 1999, 201-202, 415-418.	0.7	20
30	Influence of growth temperature on the structural and optical quality of GaInNAs/GaAs multi-quantum wells. Semiconductor Science and Technology, 2004, 19, 813-818.	1.0	20
31	Solid state chemistry of the preparation of lanthana-supported metal catalysts ? study of the impregnation step. Journal of Materials Science, 1987, 22, 3793-3800.	1.7	19
32	Preparation of catalysts constituted by rhodium supported on two cerium dioxides with different surface area. Materials Chemistry and Physics, 1987, 18, 119-127.	2.0	19
33	Critical strain region evaluation of self-assembled semiconductor quantum dots. Nanotechnology, 2007, 18, 475503.	1.3	19
34	Evaluation of interpolations of InN, AlN and GaN lattice and elastic constants for their ternary and quaternary alloys. Journal Physics D: Applied Physics, 2013, 46, 245502.	1.3	19
35	Dehydrogenating behaviour of 4f metal oxides in decomposition of butanols. Journal of Catalysis, 1981, 71, 21-26.	3.1	18
36	HREM characterization of metal catalysts supported on rare-earth oxides: samarium oxide as support. Ultramicroscopy, 1990, 34, 60-65.	0.8	18

#	Article	IF	CITATIONS
37	Dislocation behavior in InGaAs step―and alternating stepâ€graded structures: Design rules for buffer fabrication. Applied Physics Letters, 1995, 67, 3632-3634.	1.5	18
38	SiC voids, mosaic microstructure and dislocations distribution in Si carbonized layers. Diamond and Related Materials, 2003, 12, 1227-1230.	1.8	18
39	Role of elastic anisotropy in the vertical alignment of In(Ga)As quantum dot superlattices. Applied Physics Letters, 2006, 88, 193118.	1.5	18
40	Threading dislocation propagation in AlGaN/GaN based HEMT structures grown on Si (111) by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 2012, 357, 35-41.	0.7	18
41	Maghemite–silica nanocomposites: sol–gel processing enhancement of the magneto-optical response. Nanotechnology, 2008, 19, 475706.	1.3	16
42	Influence of substrate crystallography on the room temperature synthesis of AlN thin films by reactive sputtering. Applied Surface Science, 2011, 257, 9306-9313.	3.1	16
43	TPD-MS study of carbonation and hydration of Yb2O3(C). Collection of Czechoslovak Chemical Communications, 1983, 48, 2205-2212.	1.0	16
44	Characterization of samaria samples stabilized in air. Journal of the Less Common Metals, 1985, 110, 433-439.	0.9	15
45	Electron beam induced current and cathodoluminescence study of proton irradiated InAsxP1â^'x/InP quantum-well solar cells. Journal of Applied Physics, 2001, 90, 2840-2846.	1.1	14
46	Composition modulation in GaInNAs quantum wells: Comparison of experiment and theory. Journal of Applied Physics, 2005, 97, 073705.	1.1	14
47	Strain Relief Analysis of InN Quantum Dots Grown on GaN. Nanoscale Research Letters, 2007, 2, 442-6.	3.1	14
48	Improved Structural and Chemical Properties of Nearly Lattice-Matched Ternary and Quaternary Barriers for GaN-Based HEMTs. Crystal Growth and Design, 2011, 11, 2588-2591.	1.4	14
49	Selective ion-induced intermixing and damage in low-dimensional GaN/AlN quantum structures. Nanotechnology, 2013, 24, 505717.	1.3	14
50	Uniform Low-to-High In Composition InGaN Layers Grown on Si. Applied Physics Express, 2013, 6, 115503.	1.1	14
51	Comments on the preparation of M/4f oxide catalysts. Applied Catalysis, 1986, 21, 379-382.	1.1	13
52	Study of the support evolution through the process of preparation of rhodium/lanthana catalysts. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 2279.	1.0	13
53	A mechanism for the multiple atomic configurations of inversion domain boundaries in GaN layers grown on Si(111). Applied Physics Letters, 2001, 79, 3588-3590.	1.5	13
54	Radiation response ofn-type base InP solar cells. Journal of Applied Physics, 2001, 90, 3558-3565.	1.1	12

#	Article	lF	CITATIONS
55	Inversion domains in GaN layers grown on (111) silicon by molecular-beam epitaxy. Applied Physics Letters, 2001, 78, 2688-2690.	1.5	12
56	Configuration of the misfit dislocation networks in uncapped and capped InN quantum dots. Applied Physics Letters, 2007, 91, 071915.	1.5	12
57	Strain Mapping at the Atomic Scale in Highly Mismatched Heterointerfaces. Advanced Functional Materials, 2007, 17, 2588-2593.	7.8	12
58	Spontaneous formation of InGaN nanowall network directly on Si. Applied Physics Letters, 2013, 102, .	1.5	12
59	Nanostructure and Physical Properties Control of Indium Tin Oxide Films Prepared at Room Temperature through Ion Beam Sputtering Deposition at Oblique Angles. Journal of Physical Chemistry C, 2019, 123, 14036-14046.	1.5	12
60	On the estimation of the reaction mechanisms of thermal decomposition of solids from the fraction reacted at the maximum reaction rate. Thermochimica Acta, 1978, 25, 257-260.	1.2	11
61	A TPD technique for nonrestrictive kinetic studies. Reaction Kinetics and Catalysis Letters, 1979, 10, 125-130.	0.6	11
62	A work-hardening based model of the strain relief in multilayer graded-buffer structures. Applied Physics Letters, 1997, 71, 3099-3101.	1.5	11
63	Critical thickness for the saturation state of strain relaxation in the InGaAs/GaAs systems. Applied Physics Letters, 1998, 72, 1875-1877.	1.5	11
64	Electron microscopy study of SiC obtained by the carbonization of Si(111). Thin Solid Films, 1999, 343-344, 305-308.	0.8	11
65	Growth rate and critical temperatures to avoid the modulation of composition of InGaAs epitaxial layers. Applied Physics Letters, 1999, 74, 2649-2651.	1.5	11
66	Effect of the growth parameters on the structure and morphology of InAs/InGaAs/GaAs DWELL quantum dot structures. Journal of Crystal Growth, 2005, 278, 151-155.	0.7	11
67	Study of the aging in air of a cubic sample of samaria. Materials Research Bulletin, 1987, 22, 131-138.	2.7	10
68	Metal-Support Interaction Phenomena in Some High Metal Loading Lanthana Supported Rhodium Catalysts. Studies in Surface Science and Catalysis, 1989, , 123-132.	1.5	10
69	Step-graded buffer layer study of the strain relaxation by transmission electron microscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 497-501.	1.7	10
70	Work-hardening effects in the lattice relaxation of single layer heterostructures. Applied Physics Letters, 1997, 71, 2475-2477.	1.5	10
71	The role of Ge predeposition temperature in the MBE epitaxy of SiC on Ssilicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 341-346.	0.8	10
72	Strain interactions and defect formation in stacked InGaAs quantum dot and dot-in-well structures. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 245-251.	1.3	10

#	Article	IF	CITATIONS
73	Microstructural improvements of InP on GaAs (001) grown by molecular beam epitaxy by in situ hydrogenation and postgrowth annealing. Applied Physics Letters, 2009, 94, 041919.	1.5	10
74	Comprehensive (S)TEM characterization of polycrystalline GaN/AlN layers grown on LTCC substrates. Ceramics International, 2019, 45, 9114-9125.	2.3	10
75	Study of the interaction of two hexagonal neodymium oxides with atmospheric CO2 and H2O. Journal of Materials Science, 1988, 23, 1474-1480.	1.7	9
76	A study of the evolution process of antiphase boundaries in GaAs on Si. Journal of Electronic Materials, 1993, 22, 567-572.	1.0	9
77	Detailed defect study in proton irradiated InP/Si solar cells. Journal of Applied Physics, 1999, 86, 3584-3589.	1.1	9
78	Fabrication of Barbed-Shaped SnO@SnO ₂ Core/Shell Nanowires. Journal of Physical Chemistry C, 2011, 115, 4495-4501.	1.5	9
79	N-type conductivity and properties of carbon-doped InN(0001) films grown by molecular beam epitaxy. Journal of Applied Physics, 2013, 113, 033501.	1.1	9
80	Improving Magnetooptical Faraday Effect of maghemite/silica nanocomposites. Materials Chemistry and Physics, 2015, 154, 1-9.	2.0	9
81	Unravelling the polarity of InN quantum dots using a modified approach of negative-spherical-aberration imaging. Nanoscale, 2019, 11, 13632-13638.	2.8	9
82	Towards perfect MWIR transparency using oblique angle deposition. Applied Surface Science, 2019, 470, 943-950.	3.1	9
83	Radiation-induced order–disorder transition in p+–n InGaP solar cells. Applied Physics Letters, 1999, 74, 2684-2686.	1.5	8
84	Multiple quantum well GaAs/AlGaAs solar cells: transport and recombination properties by means of EBIC and cathodoluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 66, 151-156.	1.7	8
85	Control of phase modulation in InGaAs epilayers. Applied Physics Letters, 2000, 76, 3236-3238.	1.5	8
86	AlN buffer layer thickness influence on inversion domains in GaN/AlN/Si(111). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 93, 181-184.	1.7	8
87	Structural characterization of InN quantum dots grown by Metalorganic Vapour Phase Epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1687-1690.	0.8	8
88	Structural changes during the natural aging process of InN quantum dots. Journal of Applied Physics, 2009, 105, 013527.	1.1	8
89	Surface oxidation of amorphous Si and Ge slanted columnar and mesoporous thin films: Evidence, scrutiny and limitations for infrared optics. Applied Surface Science, 2019, 493, 807-817.	3.1	8
90	Preparation of some rare earth oxide supported rhodium catalysts: Study of the supports. Materials Chemistry and Physics, 1987, 17, 433-443.	2.0	7

#	Article	IF	CITATIONS
91	The chemistry in air of the rare-earth-metal sesquioxides. Comparative study of hexagonal and cubic neodymia samples. Journal of the Chemical Society Dalton Transactions, 1988, , 1765-1771.	1.1	7
92	Spatial distribution of radiation-induced defects in p+-n InGaP solar cells. Applied Physics Letters, 1999, 74, 3812-3814.	1.5	7
93	Strain relaxation behavior of InxGa1â^'xAs quantum wells on vicinal GaAs (111)B substrates. Applied Physics Letters, 2002, 80, 1541-1543.	1.5	7
94	Development of a magneto-optical sensor prototype to measure current by means of the induced magnetic field. Sensors and Actuators A: Physical, 2016, 249, 231-241.	2.0	7
95	Porosity Control for Plasma-Assisted Molecular Beam Epitaxy of GaN Nanowires. Crystal Growth and Design, 2019, 19, 2461-2469.	1.4	7
96	Optical and nanostructural insights of oblique angle deposited layers applied for photonic coatings. Applied Surface Science, 2020, 520, 146312.	3.1	7
97	A comparative study of Coî—,Re superlattices sputtered on glass and Si substrates by grazing angle of incidence RBS, HRTEM, PAC, magnetic and transport properties studies. Nuclear Instruments & Methods in Physics Research B, 1994, 85, 202-205.	0.6	6
98	SCH laser recombination rate from EBIC profiles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 42, 172-175.	1.7	6
99	Piezoelectric InGaAs/GaAs (111)B multiple quantum well photodiodes: optoelectronic properties by electron beam induced current and cathodoluminescence. Microelectronics Journal, 1999, 30, 413-417.	1.1	6
100	Effect of indium content on the normal-incident photoresponse of InGaAs/GaAs quantum-well infrared photodetectors. Applied Physics Letters, 2001, 78, 2390-2392.	1.5	6
101	Structural and optical properties of high In and N content GalnNAs quantum wells. Thin Solid Films, 2005, 483, 185-190.	0.8	6
102	Unfaulting of dislocation loops in the GalnNAs alloy: An estimation of the stacking fault energy. Journal of Applied Physics, 2005, 98, 023521.	1.1	6
103	Analysis of the stability of InGaN/GaN multiquantum wells against ion beam intermixing. Nanotechnology, 2015, 26, 425703.	1.3	6
104	Engineering of III-Nitride Semiconductors on Low Temperature Co-fired Ceramics. Scientific Reports, 2018, 8, 6879.	1.6	6
105	Controlled grain-size thermochromic VO2 coatings by the fast oxidation of sputtered vanadium or vanadium or vanadium oxide films deposited at glancing angles. Surfaces and Interfaces, 2021, 27, 101581.	1.5	6
106	Anisotropic optical properties of indium tin oxide thin films prepared by ion beam sputtering under oblique angle deposition. Applied Surface Science, 2022, 595, 152945.	3.1	6
107	Influence of Si Doping on the Subgrain Structure of GaN Grown on AlN/Si(111). Physica Status Solidi A, 1999, 176, 401-406.	1.7	5
108	Effect of graded buffer design on the defect structure in InGaAs/GaAs (111)B heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 27-31.	1.7	5

#	Article	IF	CITATIONS
109	Microchemical Analysis and Microstructural Development of Cr-Doped Mullites. Mikrochimica Acta, 2004, 145, 255-260.	2.5	5
110	Critical barrier thickness for the formation of InGaAs/GaAs quantum dots. Materials Science and Engineering C, 2005, 25, 798-803.	3.8	5
111	An approach to the formation mechanism of the composition fluctuation in GalnNAs quantum wells. Semiconductor Science and Technology, 2005, 20, 1096-1102.	1.0	5
112	Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zinc blende phase. Nanotechnology, 2010, 21, 185706.	1.3	5
113	Formation mechanisms of single-crystalline InN quantum dots fabricated via droplet epitaxy. Journal of Crystal Growth, 2018, 493, 65-75.	0.7	5
114	(S)TEM methods contributions to improve the fabrication of InGaN thin films on Si, and InN nanostructures on flat Si and rough InGaN. Journal of Alloys and Compounds, 2019, 783, 697-708.	2.8	5
115	Simultaneous Optical and Electrical Characterization of GaN Nanowire Arrays by Means of Vis-IR Spectroscopic Ellipsometry. Journal of Physical Chemistry C, 2020, 124, 1535-1543.	1.5	5
116	On the importance of light scattering for high performances nanostructured antireflective surfaces. Acta Materialia, 2020, 188, 386-393.	3.8	5
117	Application of advanced (S)TEM methods for the study of nanostructured porous functional surfaces: A few working examples. Materials Characterization, 2022, 185, 111741.	1.9	5
118	Characterization of an experimental TPD-MS system. Reliability problems. Thermochimica Acta, 1986, 98, 319-326.	1.2	4
119	New relaxation mechanisms in InGaAs/GaAs (111) multiple quantum well. Microelectronics Journal, 1999, 30, 467-470.	1.1	4
120	Relaxation study of InxGa1â^'xAs/GaAs quantum-well structures grown by MBE on (001) and (111)B GaAs for long wavelength applications. Journal of Crystal Growth, 1999, 206, 287-293.	0.7	4
121	Origin of Inversion Domains in GaN/AlN/Si(111) Heterostructures Grown by Molecular Beam Epitaxy. Physica Status Solidi (B): Basic Research, 2002, 234, 935-938.	0.7	4
122	Structural Study of Micro and Nanotubes Synthesized by Rapid Thermal Chemical Vapor Deposition. Mikrochimica Acta, 2004, 145, 129-132.	2.5	4
123	Structure of cubic polytype indium nitride layers on top of modified sapphire substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 514-517.	0.8	4
124	High Resolution HAADF-STEM Imaging Analysis of N related defects in GaNAs Quantum Wells. Microscopy and Microanalysis, 2008, 14, 318-319.	0.2	4
125	Growth and characterization of InAlN layers nearly latticeâ€matched to GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2500-2502.	0.8	4
126	Si and Ge nanostructures epitaxy on a crystalline insulating LaAlO ₃ (001) substrate. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 657-662.	0.8	4

#	Article	IF	CITATIONS
127	Analysis of some aspects of the catalytic behaviour of lanthanide oxides. Journal of the Less Common Metals, 1983, 94, 145-150.	0.9	3
128	Alcohol Decomposition as Reaction Test to Analyse the Catalytic Properties of 4 <i>f</i> Oxides. Zeitschrift Fur Physikalische Chemie, 1983, 138, 229-238.	1.4	3
129	The influence of the structural nature of samaria on its behaviour against atmospheric CO2 and H2O. Materials Letters, 1987, 6, 71-74.	1.3	3
130	Dislocation Distribution in Graded Composition IngaAs Layers. Materials Research Society Symposia Proceedings, 1993, 325, 223.	0.1	3
131	Cathodoluminescence study of pyramidal facets in piezoelectric InGaAs/GaAs multiple quantum well pin photodiodes. Microelectronics Journal, 1999, 30, 427-431.	1.1	3
132	Optical properties of InxGa1â^'xAs/GaAs MQW structures on (111)B GaAs grown by MBE: dependence on substrate miscut. Journal of Crystal Growth, 1999, 201-202, 1085-1088.	0.7	3
133	Influence of substrate misorientation on the structural characteristics of InGaAs/GaAs MQW on (111)B GaAs grown by MBE. Thin Solid Films, 1999, 343-344, 558-561.	0.8	3
134	Size self-filtering effect in vertical stacks of InAs/InP self-assembled quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 174-176.	1.3	3
135	Transmission electron microscopy study of simultaneous high-dose C++N+ co-implantation into (111)Si. Thin Solid Films, 2003, 426, 16-30.	0.8	3
136	Structural defects characterisation of GalnNAs MQWs by TEM and PL. IEE Proceedings: Optoelectronics, 2004, 151, 385-388.	0.8	3
137	Strain relief: Mainspring of Ge semiconducting nanostructures growth on LaAlO3(001). Acta Materialia, 2012, 60, 1929-1936.	3.8	3
138	Quantitative Chemical Mapping of InGaN Quantum Wells from Calibrated High-Angle Annular Dark Field Micrographs. Microscopy and Microanalysis, 2015, 21, 994-1005.	0.2	3
139	The Role of Edge Dislocations on the Red Luminescence of ZnO Films Deposited by RF-Sputtering. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	3
140	Inline electron holography and VEELS for the measurement of strain in ternary and quaternary (In,Al,Ga)N alloyed thin films and its effect on bandgap energy. Journal of Microscopy, 2016, 261, 27-35.	0.8	3
141	Energy-loss dependence of inelastic interactions between high-energy electrons and semiconductors: a model to determine the spatial distribution of electron-hole pairs generation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 42, 168-171.	1.7	2
142	EBIC mode characterization of transport properties on laser heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 57-60.	1.7	2
143	Relaxation study of AlGaAs cladding layers in InGaAs/GaAs (111)B lasers designed for 1.0–1.1μm operation. Microelectronics Journal, 2002, 33, 553-557.	1.1	2
144	Carbon fiber reinforced polymers (CFRP) Nd:YAG laser machining. , 2004, , .		2

#	Article	IF	CITATIONS
145	Improvement in the optical quality of GaInNAs/GaInAs quantum well structures by interfacial strain reduction. IEE Proceedings: Optoelectronics, 2004, 151, 301-304.	0.8	2
146	Composition Modulation in Low Temperature Growth of InGaAs/GaAs System: Influence on Plastic Relaxation. Mikrochimica Acta, 2004, 145, 63-66.	2.5	2
147	High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures. Springer Series in Materials Science, 2012, , 23-62.	0.4	2
148	Influence of the textural properties on the catalytic activity of 4f oxides. Surface Technology, 1984, 22, 299-304.	0.4	1
149	Behaviour of neodymia as a support of highly dispersed rhodium. Inorganica Chimica Acta, 1987, 140, 49-51.	1.2	1
150	High-resolution electron microscopy study of ALMBE InAs grown on (001) GaAs substrates. Ultramicroscopy, 1992, 40, 370-375.	0.8	1
151	A study of the defect structure in GaAs layers grown at low and high temperatures on Si(001) substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 196-199.	1.7	1
152	Transmission electron microscopy study of multilayer buffer structures used as dislocation filters. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 28, 515-519.	1.7	1
153	Structural study of AlGaAs/InGaAs superlattices grown by MBE on (111)B GaAs substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 106-109.	1.7	1
154	Advantages of thin interfaces in step-graded buffer structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 41-45.	1.7	1
155	Influence of substrate misorientation on the optical and structural properties of InGaAs/GaAs single strained quantum wells grown on (111)B GaAs by molecular beam epitaxy. Microelectronics Journal, 1999, 30, 373-378.	1.1	1
156	Proton-induced damage in p+–n InP solar cells: the role of electron capture at high fluences. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 294-298.	1.7	1
157	Influence of structure and defects on the performance of dot-in-well laser structures. , 2005, , .		1
158	Characterization of structure and defects in dot-in-well laser structures. Materials Science and Engineering C, 2005, 25, 793-797.	3.8	1
159	Evaluation of the influence of GaN and AlN as pseudosubstrates on the crystalline quality of InN layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1454-1457.	0.8	1
160	Natural oxidation of InN quantum dots: the role of cubic InN. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 9-12.	0.8	1
161	Cubic and hexagonal InGaAsN dilute arsenides by unintentional homogeneous incorporation of As into InGaN. Scripta Materialia, 2012, 66, 351-354.	2.6	1
162	Low temperature epitaxial deposition of GaN on LTCC substrates. , 2017, , .		1

10

#	Article	IF	CITATIONS
163	Electron Microscopy study of metal-support interaction in Rh/CeO ₂ catalysts. Proceedings Annual Meeting Electron Microscopy Society of America, 1989, 47, 256-257.	0.0	1
164	Structural Characterization of GaP/GaAs/GaP Heterostructure by TEM. Materials Research Society Symposia Proceedings, 1992, 280, 449.	0.1	0
165	Experimental evidence of the structure of annihilation of antiphase boundaries in GaAs on Si. Materials Letters, 1993, 15, 353-355.	1.3	0
166	Tem Characterization of GaAs Pin Diodes at Low Temperatures on Si Substrates. Materials Research Society Symposia Proceedings, 1993, 326, 97.	0.1	0
167	Optical emission of a one-dimensional electron gas in semiconductor V-shaped quantum wires. Physical Review B, 1998, 58, 10705-10708.	1.1	0
168	Characterisation by TEM and X-ray diffraction of linearly graded composition InGaAs buffer layers on (001) GaAs. Materials Science and Technology, 1998, 14, 1273-1278.	0.8	0
169	Failure analysis of heavily proton irradiated p+-n InGaP solar cells by EBIC and cathodoluminescence. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 66, 189-193.	1.7	0
170	Transmission electron microscopy study of InGaAs/InP superlattices grown on V-shaped surface InP substrates. Applied Surface Science, 1999, 144-145, 488-491.	3.1	0
171	Effect of In-content on the misfit dislocation interaction in InGaAs/GaAs layers. Thin Solid Films, 1999, 343-344, 302-304.	0.8	0
172	Electron beam induced current and cathodoluminescence study of proton irradiated quantum-well solar cells. , 0, , .		0
173	Correlation Between the AlN Buffer Layer Thickness and the GaN Polarity in GaN/AlN/Si(111) Grown by MBE. Materials Research Society Symposia Proceedings, 2002, 743, L3.25.1.	0.1	0
174	The role of climb and glide in misfit relief of InGaAs/GaAs(111)B heterostructures. Microelectronics Journal, 2002, 33, 559-563.	1.1	0
175	Composition fluctuations in GalnNAs multi-quantum wells. IEE Proceedings: Optoelectronics, 2004, 151, 271-274.	0.8	0
176	Spinodal decomposition in GalnNAs/GaAs multi-quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1292-1297.	0.8	0
177	Effect of the Growth Temperature in the Composition Fluctuation of GaInNAs/GaAs Quantum Wells. Microscopy and Microanalysis, 2006, 12, 754-755.	0.2	0
178	Effect of growth temperature on AlGaInN layers: a TEM analysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1400-1403.	0.8	0
179	Kinetic considerations on the phase separation of GalnNAs quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1477-1480.	0.8	0
180	Evaluation of the In desorption during the capping process of diluted nitride In(Ga)As quantum dots. Journal of Physics: Conference Series, 2011, 326, 012049.	0.3	0

#	Article	IF	CITATIONS
181	Epitaxial growth of Fe islands on LaAlO3 (001) substrates. Journal of Crystal Growth, 2014, 391, 121-129.	0.7	0
182	Activation energy for surface diffusion in GalnNAs quantum wells. , 0, , 279-282.		0
183	Influence of the Growth Temperature on the Composition Fluctuations of GaInNAs/GaAs Quantum Wells. , 2008, , 199-221.		Ο