Pallab Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8553960/publications.pdf

Version: 2024-02-01

63 papers

1,615

304743 22 h-index 36 g-index

71 all docs

71 docs citations

71 times ranked 2367 citing authors

#	Article	IF	CITATIONS
1	Glial Cells Response in Stroke. Cellular and Molecular Neurobiology, 2023, 43, 99-113.	3.3	6
2	Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson's disease: involvement of anti-inflammatory response. Experimental Brain Research, 2022, 240, 113-122.	1.5	12
3	Response to Letter to Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2022, 13, 359-361.	4.2	2
4	Sirtuin-1 - Mediated NF-ÎB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Reviews and Reports, 2022, 18, 821-838.	3.8	23
5	Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCÎ′/MMP9/AQP4-Mediated Pathway. Molecular Neurobiology, 2022, 59, 2758-2775.	4.0	14
6	Drug repurposing for stroke intervention. Drug Discovery Today, 2022, 27, 1974-1982.	6.4	12
7	Cerebroâ€renal interaction and stroke. European Journal of Neuroscience, 2021, 53, 1279-1299.	2.6	15
8	Nanotechnology in the diagnosis and treatment of stroke. Drug Discovery Today, 2021, 26, 585-592.	6.4	22
9	Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology, 2021, 162, 160-178.	4.4	12
10	Intra-arterial Stem Cell Therapy Diminishes Inflammasome Activation After Ischemic Stroke: a Possible Role of Acid Sensing Ion Channel 1a. Journal of Molecular Neuroscience, 2021, 71, 419-426.	2.3	13
11	Post-stroke depression: Chaos to exposition. Brain Research Bulletin, 2021, 168, 74-88.	3.0	22
12	Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein–protein interactions. Cell Biology and Toxicology, 2021, 37, 653-678.	5.3	14
13	Stroke and stroke prevention in sickle cell anemia in developed and selected developing countries. Journal of the Neurological Sciences, 2021, 427, 117510.	0.6	10
14	Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochemistry International, 2021, 148, 105068.	3.8	13
15	Endovascular Stem Cell Therapy Post Stroke Rescues Neurons from Endoplasmic Reticulum Stress-Induced Apoptosis by Modulating Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling. ACS Chemical Neuroscience, 2021, 12, 3745-3759.	3.5	13
16	Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochemistry International, 2020, 140, 104823.	3.8	25
17	The SARSâ€CoVâ€2/COVIDâ€19 pandemic and challenges in stroke care in India. Annals of the New York Academy of Sciences, 2020, 1473, 3-10.	3.8	32
18	Molecular Pathogenesis and Interventional Strategies for Alzheimer's Disease: Promises and Pitfalls. ACS Pharmacology and Translational Science, 2020, 3, 472-488.	4.9	21

#	Article	IF	CITATIONS
19	Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2020, 11, 1185-1202.	4.2	190
20	Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chemical Neuroscience, 2020, 11, 1525-1538.	3.5	10
21	Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Current Topics in Medicinal Chemistry, 2020, 20, 1154-1168.	2.1	10
22	Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chemical Neuroscience, 2019, 10, 44-57.	3 . 5	22
23	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	3.8	64
24	Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: A proof of concept study. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110488.	5.0	9
25	Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. International Journal of Neuroscience, 2019, 129, 1039-1044.	1.6	24
26	Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2629-2646.	3.5	8
27	Interplay between Mitophagy and Inflammasomes in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2195-2208.	3.5	19
28	Neurological sequel of chronic kidney disease: From diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Scientific Reports, 2019, 9, 3097.	3.3	66
29	Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sciences, 2019, 216, 49-58.	4.3	37
30	Growing synergy of nanodiamonds in neurodegenerative interventions. Drug Discovery Today, 2019, 24, 584-594.	6.4	22
31	Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Translational Stroke Research, 2019, 10, 121-136.	4.2	37
32	The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radical Biology and Medicine, 2019, 130, 215-233.	2.9	59
33	Therapeutic spectrum of interferonâ $\in \hat{I}^2$ in ischemic stroke. Journal of Neuroscience Research, 2019, 97, 116-127.	2.9	18
34	Noncoding RNAs in ischemic stroke: time to translate. Annals of the New York Academy of Sciences, 2018, 1421, 19-36.	3.8	41
35	Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chemical Neuroscience, 2018, 9, 421-430.	3.5	50
36	Mesenchymal Stem Cell Therapy in Ischemic Stroke: A Metaâ€analysis of Preclinical Studies. Clinical Pharmacology and Therapeutics, 2018, 103, 990-998.	4.7	45

#	Article	IF	CITATIONS
37	Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Translational Stroke Research, 2018, 9, 356-374.	4.2	49
38	Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. International Journal of Molecular Sciences, 2018, 19, 2749.	4.1	31
39	A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS Central Science, 2018, 4, 805-819.	11.3	35
40	Nicotine Alters Estrogen Receptor-Beta-Regulated Inflammasome Activity and Exacerbates Ischemic Brain Damage in Female Rats. International Journal of Molecular Sciences, 2018, 19, 1330.	4.1	19
41	Inflammasomes in stroke: a triggering role for acidâ€sensing ion channels. Annals of the New York Academy of Sciences, 2018, 1431, 14-24.	3.8	13
42	Exposure to hypoglycemia and risk of stroke. Annals of the New York Academy of Sciences, 2018, 1431, 25-34.	3.8	34
43	Budding Alliance of Nanotechnology in RNA Interference Therapeutics. Current Pharmaceutical Design, 2018, 24, 2632-2643.	1.9	4
44	Hypercholesterolemia causes psychomotor abnormalities in mice and alterations in cortico-striatal biogenic amine neurotransmitters: Relevance to Parkinson's disease. Neurochemistry International, 2017, 108, 15-26.	3.8	25
45	Stroke Management: An Emerging Role of Nanotechnology. Micromachines, 2017, 8, 262.	2.9	38
46	Recent Advances in Oncological Submissions of Dendrimer. Current Pharmaceutical Design, 2017, 23, 3084-3098.	1.9	52
47	Large animal canine endovascular ischemic stroke models: A review. Brain Research Bulletin, 2016, 127, 134-140.	3.0	22
48	Treatment of unruptured intracranial aneurysms: a review. Expert Review of Neurotherapeutics, 2016, 16, 1205-1216.	2.8	4
49	A possible therapeutic potential of quercetin through inhibition of \hat{l}_4 -calpain in hypoxia induced neuronal injury: a molecular dynamics simulation study. Neural Regeneration Research, 2016, 11, 1247.	3.0	14
50	Intra-arterial Approaches to Stem Cell Therapy for Ischemic Stroke., 2015,, 65-89.		1
51	Resveratrol inhibits matrix metalloproteinases to attenuate neuronal damage in cerebral ischemia: a molecular docking study exploring possible neuroprotection. Neural Regeneration Research, 2015, 10, 568.	3.0	50
52	Piroxicam-mediated modulatory action of 5-hydroxytryptamine serves as a "brake" on neuronal excitability in ischemic stroke. Neural Regeneration Research, 2015, 10, 1418.	3.0	3
53	Inhibition of matrix metalloproteinase-2 and 9 by Piroxicam confer neuroprotection in cerebral ischemia: An in silico evaluation of the hypothesis. Medical Hypotheses, 2014, 83, 697-701.	1.5	27
54	Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism. Journal of Physiology and Biochemistry, 2014, 70, 901-913.	3.0	15

#	Article	IF	Citations
55	Neuroprotection by $\hat{l}^{1}\!\!/\!\!4$ -calpain and matrix metalloproteinases inhibition by Piroxicam in cerebral ischemia: an in silico study. Medicinal Chemistry Research, 2013, 22, 5112-5119.	2.4	5
56	Neuroprotective effects of quercetin in chemical hypoxia: in silico evaluation of the hypothesis exploring PKC inhibition-mediated pharmacotherapy. Medicinal Chemistry Research, 2013, 22, 4836-4841.	2.4	2
57	Does Piroxicam really protect ischemic neurons and influence neuronal firing in cerebral ischemia? An exploration towards therapeutics. Medical Hypotheses, 2013, 81, 429-435.	1.5	4
58	Aquaporin-4 Inhibition Mediates Piroxicam-Induced Neuroprotection against Focal Cerebral Ischemia/Reperfusion Injury in Rodents. PLoS ONE, 2013, 8, e73481.	2.5	52
59	An in-silico strategy to explore neuroprotection by quercetin in cerebral ischemia: A novel hypothesis based on inhibition of matrix metalloproteinase (MMPs) and acid sensing ion channel 1a (ASIC1a). Medical Hypotheses, 2012, 79, 76-81.	1.5	16
60	Neuroprotective potential of Piroxicam in cerebral ischemia: An in silico evaluation of the hypothesis to explore its therapeutic efficacy by inhibition of aquaporin-4 and acid sensing ion channella. Medical Hypotheses, 2012, 79, 352-357.	1.5	23
61	Cognitive effects of NSAIDs in cerebral ischemia: A hypothesis exploring mechanical action mediated pharmacotherapy. Medical Hypotheses, 2012, 79, 393-395.	1.5	6
62	Combination therapy of Ifenprodil with Piroxicam may be an effective therapeutic intervention in cerebral stroke: A hypothesis. Medical Hypotheses, 2012, 79, 516-518.	1.5	6
63	Minocycline and magnesium in combination may be a good therapeutic intervention for cerebral ischemia. Medical Hypotheses, 2011, 77, 1129-1131.	1.5	3