
Pallab Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8553960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2020, 11, 1185-1202.	4.2	190
2	Neurological sequel of chronic kidney disease: From diminished Acetylcholinesterase activity to mitochondrial dysfunctions, oxidative stress and inflammation in mice brain. Scientific Reports, 2019, 9, 3097.	3.3	66
3	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	3.8	64
4	The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radical Biology and Medicine, 2019, 130, 215-233.	2.9	59
5	Aquaporin-4 Inhibition Mediates Piroxicam-Induced Neuroprotection against Focal Cerebral Ischemia/Reperfusion Injury in Rodents. PLoS ONE, 2013, 8, e73481.	2.5	52
6	Recent Advances in Oncological Submissions of Dendrimer. Current Pharmaceutical Design, 2017, 23, 3084-3098.	1.9	52
7	Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chemical Neuroscience, 2018, 9, 421-430.	3.5	50
8	Resveratrol inhibits matrix metalloproteinases to attenuate neuronal damage in cerebral ischemia: a molecular docking study exploring possible neuroprotection. Neural Regeneration Research, 2015, 10, 568.	3.0	50
9	Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Translational Stroke Research, 2018, 9, 356-374.	4.2	49
10	Mesenchymal Stem Cell Therapy in Ischemic Stroke: A Metaâ€analysis of Preclinical Studies. Clinical Pharmacology and Therapeutics, 2018, 103, 990-998.	4.7	45
11	Noncoding RNAs in ischemic stroke: time to translate. Annals of the New York Academy of Sciences, 2018, 1421, 19-36.	3.8	41
12	Stroke Management: An Emerging Role of Nanotechnology. Micromachines, 2017, 8, 262.	2.9	38
13	Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sciences, 2019, 216, 49-58.	4.3	37
14	Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Translational Stroke Research, 2019, 10, 121-136.	4.2	37
15	A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS Central Science, 2018, 4, 805-819.	11.3	35
16	Exposure to hypoglycemia and risk of stroke. Annals of the New York Academy of Sciences, 2018, 1431, 25-34.	3.8	34
17	The SARSâ€CoVâ€2/COVIDâ€19 pandemic and challenges in stroke care in India. Annals of the New York Academy of Sciences, 2020, 1473, 3-10.	3.8	32
18	Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. International Journal of Molecular Sciences, 2018, 19, 2749.	4.1	31

#	Article	IF	CITATIONS
19	Inhibition of matrix metalloproteinase-2 and 9 by Piroxicam confer neuroprotection in cerebral ischemia: An in silico evaluation of the hypothesis. Medical Hypotheses, 2014, 83, 697-701.	1.5	27
20	Hypercholesterolemia causes psychomotor abnormalities in mice and alterations in cortico-striatal biogenic amine neurotransmitters: Relevance to Parkinson's disease. Neurochemistry International, 2017, 108, 15-26.	3.8	25
21	Lycopene - A pleiotropic neuroprotective nutraceutical: Deciphering its therapeutic potentials in broad spectrum neurological disorders. Neurochemistry International, 2020, 140, 104823.	3.8	25
22	Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. International Journal of Neuroscience, 2019, 129, 1039-1044.	1.6	24
23	Neuroprotective potential of Piroxicam in cerebral ischemia: An in silico evaluation of the hypothesis to explore its therapeutic efficacy by inhibition of aquaporin-4 and acid sensing ion channel1a. Medical Hypotheses, 2012, 79, 352-357.	1.5	23
24	Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Reviews and Reports, 2022, 18, 821-838.	3.8	23
25	Large animal canine endovascular ischemic stroke models: A review. Brain Research Bulletin, 2016, 127, 134-140.	3.0	22
26	Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chemical Neuroscience, 2019, 10, 44-57.	3.5	22
27	Growing synergy of nanodiamonds in neurodegenerative interventions. Drug Discovery Today, 2019, 24, 584-594.	6.4	22
28	Nanotechnology in the diagnosis and treatment of stroke. Drug Discovery Today, 2021, 26, 585-592.	6.4	22
29	Post-stroke depression: Chaos to exposition. Brain Research Bulletin, 2021, 168, 74-88.	3.0	22
30	Molecular Pathogenesis and Interventional Strategies for Alzheimer's Disease: Promises and Pitfalls. ACS Pharmacology and Translational Science, 2020, 3, 472-488.	4.9	21
31	Nicotine Alters Estrogen Receptor-Beta-Regulated Inflammasome Activity and Exacerbates Ischemic Brain Damage in Female Rats. International Journal of Molecular Sciences, 2018, 19, 1330.	4.1	19
32	Interplay between Mitophagy and Inflammasomes in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2195-2208.	3.5	19
33	Therapeutic spectrum of interferonâ€Î² in ischemic stroke. Journal of Neuroscience Research, 2019, 97, 116-127.	2.9	18
34	An in-silico strategy to explore neuroprotection by quercetin in cerebral ischemia: A novel hypothesis based on inhibition of matrix metalloproteinase (MMPs) and acid sensing ion channel 1a (ASIC1a). Medical Hypotheses, 2012, 79, 76-81.	1.5	16
35	Alleviation of glutamate mediated neuronal insult by piroxicam in rodent model of focal cerebral ischemia: a possible mechanism of GABA agonism. Journal of Physiology and Biochemistry, 2014, 70, 901-913.	3.0	15
36	Cerebroâ€renal interaction and stroke. European Journal of Neuroscience, 2021, 53, 1279-1299.	2.6	15

#	Article	IF	CITATIONS
37	Pyruvate kinase M2 in chronic inflammations: a potpourri of crucial protein–protein interactions. Cell Biology and Toxicology, 2021, 37, 653-678.	5.3	14
38	A possible therapeutic potential of quercetin through inhibition of μ-calpain in hypoxia induced neuronal injury: a molecular dynamics simulation study. Neural Regeneration Research, 2016, 11, 1247.	3.0	14
39	Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCÎ′/MMP9/AQP4-Mediated Pathway. Molecular Neurobiology, 2022, 59, 2758-2775.	4.0	14
40	Inflammasomes in stroke: a triggering role for acidâ€sensing ion channels. Annals of the New York Academy of Sciences, 2018, 1431, 14-24.	3.8	13
41	Intra-arterial Stem Cell Therapy Diminishes Inflammasome Activation After Ischemic Stroke: a Possible Role of Acid Sensing Ion Channel 1a. Journal of Molecular Neuroscience, 2021, 71, 419-426.	2.3	13
42	Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochemistry International, 2021, 148, 105068.	3.8	13
43	Endovascular Stem Cell Therapy Post Stroke Rescues Neurons from Endoplasmic Reticulum Stress-Induced Apoptosis by Modulating Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling. ACS Chemical Neuroscience, 2021, 12, 3745-3759.	3.5	13
44	Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology, 2021, 162, 160-178.	4.4	12
45	Garcinol blocks motor behavioural deficits by providing dopaminergic neuroprotection in MPTP mouse model of Parkinson's disease: involvement of anti-inflammatory response. Experimental Brain Research, 2022, 240, 113-122.	1.5	12
46	Drug repurposing for stroke intervention. Drug Discovery Today, 2022, 27, 1974-1982.	6.4	12
47	Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chemical Neuroscience, 2020, 11, 1525-1538.	3.5	10
48	Stroke and stroke prevention in sickle cell anemia in developed and selected developing countries. Journal of the Neurological Sciences, 2021, 427, 117510.	0.6	10
49	Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Current Topics in Medicinal Chemistry, 2020, 20, 1154-1168.	2.1	10
50	Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: A proof of concept study. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110488.	5.0	9
51	Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2629-2646.	3.5	8
52	Cognitive effects of NSAIDs in cerebral ischemia: A hypothesis exploring mechanical action mediated pharmacotherapy. Medical Hypotheses, 2012, 79, 393-395.	1.5	6
53	Combination therapy of Ifenprodil with Piroxicam may be an effective therapeutic intervention in cerebral stroke: A hypothesis. Medical Hypotheses, 2012, 79, 516-518.	1.5	6
54	Glial Cells Response in Stroke. Cellular and Molecular Neurobiology, 2023, 43, 99-113.	3.3	6

PALLAB BHATTACHARYA

#	Article	IF	CITATIONS
55	Neuroprotection by μ-calpain and matrix metalloproteinases inhibition by Piroxicam in cerebral ischemia: an in silico study. Medicinal Chemistry Research, 2013, 22, 5112-5119.	2.4	5
56	Does Piroxicam really protect ischemic neurons and influence neuronal firing in cerebral ischemia? An exploration towards therapeutics. Medical Hypotheses, 2013, 81, 429-435.	1.5	4
57	Treatment of unruptured intracranial aneurysms: a review. Expert Review of Neurotherapeutics, 2016, 16, 1205-1216.	2.8	4
58	Budding Alliance of Nanotechnology in RNA Interference Therapeutics. Current Pharmaceutical Design, 2018, 24, 2632-2643.	1.9	4
59	Minocycline and magnesium in combination may be a good therapeutic intervention for cerebral ischemia. Medical Hypotheses, 2011, 77, 1129-1131.	1.5	3
60	Piroxicam-mediated modulatory action of 5-hydroxytryptamine serves as a "brake" on neuronal excitability in ischemic stroke. Neural Regeneration Research, 2015, 10, 1418.	3.0	3
61	Neuroprotective effects of quercetin in chemical hypoxia: in silico evaluation of the hypothesis exploring PKC inhibition-mediated pharmacotherapy. Medicinal Chemistry Research, 2013, 22, 4836-4841.	2.4	2
62	Response to Letter to Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2022, 13, 359-361.	4.2	2
63	Intra-arterial Approaches to Stem Cell Therapy for Ischemic Stroke. , 2015, , 65-89.		1