List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8553909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases. Science, 2002, 298, 1911-1912.	12.6	3,738
2	Mitogen-Activated Protein Kinase: Conservation of a Three-Kinase Module From Yeast to Human. Physiological Reviews, 1999, 79, 143-180.	28.8	2,492
3	Organization and regulation of mitogen-activated protein kinase signaling pathways. Current Opinion in Cell Biology, 1999, 11, 211-218.	5.4	1,195
4	Coordination of Rho GTPase activities during cell protrusion. Nature, 2009, 461, 99-103.	27.8	898
5	Dynamic Reprogramming of the Kinome in Response to Targeted MEK Inhibition in Triple-Negative Breast Cancer. Cell, 2012, 149, 307-321.	28.9	637
6	Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nature Reviews Molecular Cell Biology, 2002, 3, 663-672.	37.0	519
7	Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Medicine, 2000, 6, 1176-1182.	30.7	506
8	The Regulation of Anoikis: MEKK-1 Activation Requires Cleavage by Caspases. Cell, 1997, 90, 315-323.	28.9	495
9	Diversity in function and regulation of MAP kinase pathways. Trends in Biochemical Sciences, 1994, 19, 236-240.	7.5	473
10	Gα12 and Gα13 Stimulate Rho-dependent Stress Fiber Formation and Focal Adhesion Assembly. Journal of Biological Chemistry, 1995, 270, 24631-24634.	3.4	423
11	The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1341-1348.	4.1	401
12	Caspase-dependent Cleavage of Signaling Proteins during Apoptosis. Journal of Biological Chemistry, 1998, 273, 7141-7147.	3.4	374
13	Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nature Cell Biology, 2003, 5, 1104-1110.	10.3	346
14	Sequential protein kinase reactions controlling cell growth and differentiation. Current Opinion in Cell Biology, 1994, 6, 230-238.	5.4	338
15	Signal Transduction Pathways Regulated by Mitogen-activated/Extracellular Response Kinase Kinase Kinase Induce Cell Death. Journal of Biological Chemistry, 1996, 271, 3229-3237.	3.4	330
16	MEKKs, GCKs, MLKs, PAKs, TAKs, and Tpls: upstream regulators of the c-Jun amino-terminal kinases?. Current Opinion in Genetics and Development, 1997, 7, 67-74.	3.3	303
17	Selective activation and functional significance of p38α mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. Journal of Clinical Investigation, 1999, 103, 851-858.	8.2	274
18	Analysis of Orthologous Gene Expression between Human Pulmonary Adenocarcinoma and a Carcinogen-Induced Murine Model. American Journal of Pathology, 2005, 167, 1763-1775.	3.8	269

#	Article	IF	CITATIONS
19	Unexplored therapeutic opportunities in the human genome. Nature Reviews Drug Discovery, 2018, 17, 317-332.	46.4	263
20	Inhibition of Lapatinib-Induced Kinome Reprogramming in ERBB2-Positive Breast Cancer by Targeting BET Family Bromodomains. Cell Reports, 2015, 11, 390-404.	6.4	254
21	Increased Expression of Death Receptors 4 and 5 Synergizes the Apoptosis Response to Combined Treatment with Etoposide and TRAIL. Molecular and Cellular Biology, 2000, 20, 205-212.	2.3	249
22	CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Human Molecular Genetics, 2005, 14, 2521-2531.	2.9	238
23	MEK Kinase 1, a Substrate for DEVD-Directed Caspases, Is Involved in Genotoxin-Induced Apoptosis. Molecular and Cellular Biology, 1998, 18, 2416-2429.	2.3	227
24	Interleukin-8 Regulation of the Ras/Raf/Mitogen-activated Protein Kinase Pathway in Human Neutrophils. Journal of Biological Chemistry, 1996, 271, 2832-2838.	3.4	226
25	Cloning of a Novel Mitogen-activated Protein Kinase Kinase Kinase, MEKK4, That Selectively Regulates the c-Jun Amino Terminal Kinase Pathway. Journal of Biological Chemistry, 1997, 272, 8288-8295.	3.4	226
26	Epidermal Growth Factor Protects Epithelial Cells against Fas-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 17612-17618.	3.4	225
27	Structural and Evolutionary Division of Phosphotyrosine Binding (PTB) Domains. Journal of Molecular Biology, 2005, 345, 1-20.	4.2	225
28	Molecular Cloning of Mitogen-activated Protein/ERK Kinase Kinases (MEKK) 2 and 3. Journal of Biological Chemistry, 1996, 271, 5361-5368.	3.4	210
29	Fibroblast Growth Factor-2 Suppression of Tumor Necrosis Factor α-Mediated Apoptosis Requires Ras and the Activation of Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1996, 271, 14560-14566.	3.4	202
30	Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle, 2011, 10, 2865-2873.	2.6	199
31	Reovirus-Induced Apoptosis Is Mediated by TRAIL. Journal of Virology, 2000, 74, 8135-8139.	3.4	186
32	Activation of Jun Kinase/Stress-activated Protein Kinase by GTPase-deficient Mutants of Gα12 and Gα13. Journal of Biological Chemistry, 1995, 270, 18655-18659.	3.4	168
33	Direct Interaction between Ras and the Kinase Domain of Mitogen-activated Protein Kinase Kinase Kinase (MEKK1). Journal of Biological Chemistry, 1995, 270, 11757-11760.	3.4	161
34	Selective Activation of c-Jun Kinase Mitogen-activated Protein Kinase by CD40 on Human B Cells. Journal of Biological Chemistry, 1995, 270, 30823-30828.	3.4	159
35	Anti-apoptotic versus pro-apoptotic signal transduction: Checkpoints and stop signs along the road to death. Oncogene, 1998, 17, 1475-1482.	5.9	153
36	MEKK2 Associates with the Adapter Protein Lad/RIBP and Regulates the MEK5-BMK1/ERK5 Pathway. Journal of Biological Chemistry, 2001, 276, 5093-5100.	3.4	138

#	Article	IF	CITATIONS
37	14-3-3 Proteins Interact with Specific MEK Kinases. Journal of Biological Chemistry, 1998, 273, 3476-3483.	3.4	137
38	Intracellular Signaling by the Chemokine Receptor US28 during Human Cytomegalovirus Infection. Journal of Virology, 1998, 72, 5535-5544.	3.4	135
39	ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non–small cell lung cancer. Seminars in Oncology, 2002, 29, 37-46.	2.2	134
40	Proteomic Identification of the Cerebral Cavernous Malformation Signaling Complex. Journal of Proteome Research, 2007, 6, 4343-4355.	3.7	132
41	Enhancer Remodeling during Adaptive Bypass to MEK Inhibition Is Attenuated by Pharmacologic Targeting of the P-TEFb Complex. Cancer Discovery, 2017, 7, 302-321.	9.4	128
42	Rho Kinase Inhibition Rescues the Endothelial Cell Cerebral Cavernous Malformation Phenotype. Journal of Biological Chemistry, 2010, 285, 11760-11764.	3.4	126
43	Combined PI3K/mTOR and MEK Inhibition Provides Broad Antitumor Activity in Faithful Murine Cancer Models. Clinical Cancer Research, 2012, 18, 5290-5303.	7.0	118
44	MEK Kinase 1 (MEKK1) Transduces c-Jun NH2-terminal Kinase Activation in Response to Changes in the Microtubule Cytoskeleton. Journal of Biological Chemistry, 1999, 274, 12605-12610.	3.4	115
45	MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO Journal, 2003, 22, 3346-3355.	7.8	114
46	MAPK kinase kinases (MKKKs) as a target class for small-molecule inhibition to modulate signaling networks and gene expression. Current Opinion in Chemical Biology, 2005, 9, 325-331.	6.1	108
47	Molecular Pathways: Adaptive Kinome Reprogramming in Response to Targeted Inhibition of the BRAF–MEK–ERK Pathway in Cancer. Clinical Cancer Research, 2014, 20, 2516-2522.	7.0	108
48	PB1 Domain Interaction of p62/Sequestosome 1 and MEKK3 Regulates NF-κB Activation. Journal of Biological Chemistry, 2010, 285, 2077-2089.	3.4	107
49	Tumor Necrosis Factor-α Activation of the c-Jun N-terminal Kinase Pathway in Human Neutrophils. Journal of Biological Chemistry, 2001, 276, 2189-2199.	3.4	102
50	MAP3K4/CBP-Regulated H2B Acetylation Controls Epithelial-Mesenchymal Transition in Trophoblast Stem Cells. Cell Stem Cell, 2011, 8, 525-537.	11.1	102
51	Combined use of oligonucleotide and tissue microarrays identifies cancer/testis antigens as biomarkers in lung carcinoma. Cancer Research, 2002, 62, 3971-9.	0.9	100
52	Gαi-αs chimeras define the function of α chain domains in control of G protein activation and βγ subunit complex interactions. Cell, 1990, 63, 697-706.	28.9	99
53	MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis. Genes and Cancer, 2013, 4, 419-426.	1.9	99
54	Collect Earth: An online tool for systematic reference data collection in land cover and use applications. Environmental Modelling and Software, 2019, 118, 166-171.	4.5	99

#	Article	IF	CITATIONS
55	MEKK1 is essential for cardiac hypertrophy and dysfunction induced by Gq. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3866-3871.	7.1	97
56	Inhibition of Src Family Kinases Blocks Epidermal Growth Factor (EGF)-induced Activation of Akt, Phosphorylation of c-Cbl, and Ubiquitination of the EGF Receptor. Journal of Biological Chemistry, 2002, 277, 24967-24975.	3.4	97
57	The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. Journal of Clinical Investigation, 2002, 110, 271-279.	8.2	91
58	Activation of MEK Kinase 1 by the c-Abl Protein Tyrosine Kinase in Response to DNA Damage. Molecular and Cellular Biology, 2000, 20, 4979-4989.	2.3	90
59	MEK Kinase 2 and the Adaptor Protein Lad Regulate Extracellular Signal-Regulated Kinase 5 Activation by Epidermal Growth Factor via Src. Molecular and Cellular Biology, 2003, 23, 2298-2308.	2.3	90
60	Receptor activation of G proteins. FASEB Journal, 1988, 2, 2841-2848.	0.5	88
61	Wiring diagrams of MAPK regulation by MEKK1, 2, and 3. Biochemistry and Cell Biology, 2004, 82, 658-663.	2.0	86
62	Mild systolic dysfunction in heart failure (left ventricular ejection fraction >35%): Baseline characteristics, prognosis and response to therapy in the vasodilator in heart failure trials (V-HeFT). Journal of the American College of Cardiology, 1996, 27, 642-649.	2.8	85
63	[d-Arg1,d-Phe5,d-Trp7,9,Leu11]Substance P Acts as a Biased Agonist toward Neuropeptide and Chemokine Receptors. Journal of Biological Chemistry, 1998, 273, 3097-3104.	3.4	85
64	Ubiquitylation of MEKK1 Inhibits Its Phosphorylation of MKK1 and MKK4 and Activation of the ERK1/2 and JNK Pathways. Journal of Biological Chemistry, 2003, 278, 1403-1406.	3.4	84
65	PB1 Domains of MEKK2 and MEKK3 Interact with the MEK5 PB1 Domain for Activation of the ERK5 Pathway. Journal of Biological Chemistry, 2003, 278, 36989-36992.	3.4	84
66	Structure of the bacteriophage lambda cohesive end site: location of the sites of terminase binding (cosB) and nicking (cosN). Gene, 1983, 24, 207-218.	2.2	82
67	Cerebral Cavernous Malformation 2 Protein Promotes Smad Ubiquitin Regulatory Factor 1-mediated RhoA Degradation in Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 13301-13305.	3.4	82
68	Activation of MEKK by Formyl-methionyl-leucyl-phenylalanine in Human Neutrophils. Journal of Biological Chemistry, 1996, 271, 33598-33606.	3.4	81
69	The in vitro production and characterization of neutrophils from embryonic stem cells. Blood, 2004, 103, 852-859.	1.4	81
70	MEKK2 regulates the coordinate activation of ERK5 and JNK in response to FGF-2 in fibroblasts. Journal of Cellular Physiology, 2004, 199, 140-148.	4.1	75
71	Aggregation of the FcεRI on Mast Cells Stimulates c-Jun Amino-terminal Kinase Activity. Journal of Biological Chemistry, 1996, 271, 12762-12766.	3.4	72
72	Influence of cholera toxin on the regulation of adenylate cyclase by GTP. Biochemical and Biophysical Research Communications, 1977, 78, 792-798.	2.1	71

#	Article	IF	CITATIONS
73	MEKK1 Mediates the Ubiquitination and Degradation of c-Jun in Response to Osmotic Stress. Molecular and Cellular Biology, 2007, 27, 510-517.	2.3	71
74	Potentiation of apoptosis by low dose stress stimuli in cells expressing activated MEK kinase 1. Oncogene, 1997, 15, 2439-2447.	5.9	70
75	Discovery of Small Molecule Mer Kinase Inhibitors for the Treatment of Pediatric Acute Lymphoblastic Leukemia. ACS Medicinal Chemistry Letters, 2012, 3, 129-134.	2.8	67
76	[22] Measuring activation of kinases in mitogen-activated protein kinase regulatory network. Methods in Enzymology, 1994, 238, 258-270.	1.0	66
77	Reovirus Infection Activates JNK and the JNK-Dependent Transcription Factor c-Jun. Journal of Virology, 2001, 75, 11275-11283.	3.4	65
78	Trophoblast Stem Cell Maintenance by Fibroblast Growth Factor 4 Requires MEKK4 Activation of Jun N-Terminal Kinase. Molecular and Cellular Biology, 2009, 29, 2748-2761.	2.3	65
79	Caspase 8-dependent sensitization of cancer cells to TRAIL-induced apoptosis following reovirus-infection. Oncogene, 2001, 20, 6910-6919.	5.9	64
80	Ablation of MEKK4 Kinase Activity Causes Neurulation and Skeletal Patterning Defects in the Mouse Embryo. Molecular and Cellular Biology, 2005, 25, 8948-8959.	2.3	63
81	Differential Involvement of MEK Kinase 1 (MEKK1) in the Induction of Apoptosis in Response to Microtubule-targeted Drugsversus DNA Damaging Agents. Journal of Biological Chemistry, 1999, 274, 10916-10922.	3.4	62
82	MEK inhibition in non-small cell lung cancer. Lung Cancer, 2014, 86, 121-125.	2.0	62
83	How does the G protein, Gi2, transduce mitogenic signals?. Journal of Cellular Biochemistry, 1994, 54, 415-422.	2.6	60
84	JNK Regulates the Release of Proapoptotic Mitochondrial Factors in Reovirus-Infected Cells. Journal of Virology, 2004, 78, 13132-13138.	3.4	60
85	Application of Multiplexed Kinase Inhibitor Beads to Study Kinome Adaptations in Drug-Resistant Leukemia. PLoS ONE, 2013, 8, e66755.	2.5	60
86	Role of the amino-terminal domains of MEKKs in the activation of NFκB and MAPK pathways and in the regulation of cell proliferation and apoptosis. Cellular Signalling, 2002, 14, 123-131.	3.6	59
87	Mitogen-activated Protein Kinase Activation Requires Two Signal Inputs from the Human Anaphylatoxin C5a Receptor. Journal of Biological Chemistry, 1995, 270, 19828-19832.	3.4	58
88	New Mechanisms of Resistance to MEK Inhibitors in Melanoma Revealed by Intravital Imaging. Cancer Research, 2018, 78, 542-557.	0.9	57
89	Selective coupling of the human anaphylatoxin C5a receptor and α16in human kidney 293 cells. FEBS Letters, 1993, 323, 132-134.	2.8	54
90	SWI/SNF Chromatin-Remodeling Factor Smarcd3/Baf60c Controls Epithelial-Mesenchymal Transition by Inducing Wnt5a Signaling. Molecular and Cellular Biology, 2013, 33, 3011-3025.	2.3	54

#	Article	IF	CITATIONS
91	Integrated activation of MAP3Ks balances cell fate in response to stress. Journal of Cellular Biochemistry, 2007, 102, 848-858.	2.6	53
92	UNC569, a Novel Small-Molecule Mer Inhibitor with Efficacy against Acute Lymphoblastic Leukemia <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2013, 12, 2367-2377.	4.1	53
93	Mass Spectrometry–Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Research, 2018, 78, 2732-2746.	0.9	52
94	Bradykinin antagonist dimer, CU201, inhibits the growth of human lung cancer cell lines by a "biased agonist" mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4608-4613.	7.1	51
95	Identification and Optimization of 4â€Anilinoquinolines as Inhibitors of Cyclinâ€G Associated Kinase. ChemMedChem, 2018, 13, 48-66.	3.2	51
96	Live Cell Fluorescence Imaging of T Cell MEKK2. Immunity, 1999, 11, 411-421.	14.3	50
97	A comparison of binding properties and structure of NGF receptor on PC12 pheochromocytoma and A875 melanoma cells. Journal of Cellular Biochemistry, 1983, 22, 219-233.	2.6	49
98	CD40 and adenosine A2 receptor agonist–cyclic adenosine monophosphate rescue B-cell antigen receptor–induced apoptosis through independent pathways and converge to prevent caspase activation. Journal of Allergy and Clinical Immunology, 2000, 105, 522-531.	2.9	49
99	MEKK4 Stimulation of p38 and JNK Activity Is Negatively Regulated by GSK3β. Journal of Biological Chemistry, 2007, 282, 30476-30484.	3.4	49
100	MAP3K4 Controls the Chromatin Modifier HDAC6 during Trophoblast Stem Cell Epithelial-to-Mesenchymal Transition. Cell Reports, 2017, 18, 2387-2400.	6.4	49
101	FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. Journal of Clinical Investigation, 2020, 130, 4871-4887.	8.2	49
102	Cabozantinib for neurofibromatosis type 1–related plexiform neurofibromas: a phase 2 trial. Nature Medicine, 2021, 27, 165-173.	30.7	46
103	Rapamycin Potentiates Dexamethasone-Induced Apoptosis and Inhibits JNK Activity in Lymphoblastoid Cells. Biochemical and Biophysical Research Communications, 1997, 230, 386-391.	2.1	45
104	MicroRNA 9-3p Targets β ₁ Integrin To Sensitize Claudin-Low Breast Cancer Cells to MEK Inhibition. Molecular and Cellular Biology, 2013, 33, 2260-2274.	2.3	44
105	PB1 Domain-Dependent Signaling Complex Is Required for Extracellular Signal-Regulated Kinase 5 Activation. Molecular and Cellular Biology, 2006, 26, 2065-2079.	2.3	43
106	Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling. Biological Chemistry, 2013, 394, 35-42.	2.5	43
107	Reovirus-Induced Alteration in Expression of Apoptosis and DNA Repair Genes with Potential Roles in Viral Pathogenesis. Journal of Virology, 2003, 77, 8934-8947.	3.4	42
108	Combination therapy with potent PI3K and MAPK inhibitors overcomes adaptive kinome resistance to single agents in preclinical models of glioblastoma. Neuro-Oncology, 2017, 19, 1469-1480.	1.2	42

#	Article	IF	CITATIONS
109	Tousled-like Kinases Modulate Reactivation of Gammaherpesviruses from Latency. Cell Host and Microbe, 2013, 13, 204-214.	11.0	41
110	An Operational Before-After-Control-Impact (BACI) Designed Platform for Vegetation Monitoring at Planetary Scale. Remote Sensing, 2018, 10, 760.	4.0	40
111	Apoptosis Stimulated by the 91-kDa Caspase Cleavage MEKK1 Fragment Requires Translocation to Soluble Cellular Compartments. Journal of Biological Chemistry, 2002, 277, 10283-10291.	3.4	39
112	MEKK4 Is an Effector of the Embryonic TRAF4 for JNK Activation. Journal of Biological Chemistry, 2005, 280, 35793-35796.	3.4	39
113	An Unbiased Proteomic Screen Reveals Caspase Cleavage Is Positively and Negatively Regulated by Substrate Phosphorylation. Molecular and Cellular Proteomics, 2014, 13, 1184-1197.	3.8	39
114	GSK2801, a BAZ2/BRD9 Bromodomain Inhibitor, Synergizes with BET Inhibitors to Induce Apoptosis in Triple-Negative Breast Cancer. Molecular Cancer Research, 2019, 17, 1503-1518.	3.4	39
115	Differential Modulation of Bombesin-stimulated Phospholipase Cβ and Mitogen-activated Protein Kinase Activity by [D-Arg1, D-Phe5, D-Trp7,9,Leu11>]Substance P. Journal of Biological Chemistry, 1995, 270, 8623-8628.	3.4	37
116	TRAIL and inhibitors of apoptosis are opposing determinants for NF-κB-dependent, genotoxin-induced apoptosis of cancer cells. Oncogene, 2002, 21, 260-271.	5.9	37
117	Loss of Arp2/3 induces an NF-κB–dependent, nonautonomous effect on chemotactic signaling. Journal of Cell Biology, 2013, 203, 907-916.	5.2	37
118	Implications of Mesenchymal Cells in Cancer Stem Cell Populations: Relevance to EMT. Current Pathobiology Reports, 2014, 2, 21-26.	3.4	37
119	New Therapeutic Strategies for Lung Cancer. Chest, 2000, 117, 163S-168S.	0.8	36
120	Discordant Signal Transduction and Growth Inhibition of Small Cell Lung Carcinomas Induced by Expression of GTPase-deficient Gα16. Journal of Biological Chemistry, 1996, 271, 349-354.	3.4	35
121	Complementation analysis of hormone-sensitive adenylate cyclase. Nature, 1978, 272, 720-722.	27.8	34
122	MEKK1 regulates the AP-1 dimer repertoire via control of JunB transcription and Fra-2 protein stability. Oncogene, 2005, 24, 801-809.	5.9	34
123	Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma. Journal of Medicinal Chemistry, 2019, 62, 4772-4778.	6.4	34
124	Competitive Kinase Enrichment Proteomics Reveals that Abemaciclib Inhibits GSK3β and Activates WNT Signaling. Molecular Cancer Research, 2018, 16, 333-344.	3.4	33
125	Combined kinase inhibitors of MEK1/2 and either PI3K or PDGFR are efficacious in intracranial triple-negative breast cancer. Neuro-Oncology, 2017, 19, 1481-1493.	1.2	32
126	Kinome and Transcriptome Profiling Reveal Broad and Distinct Activities of Erlotinib, Sunitinib, and Sorafenib in the Mouse Heart and Suggest Cardiotoxicity From Combined Signal Transducer and Activator of Transcription and Epidermal Growth Factor Receptor Inhibition. Journal of the American Heart Association, 2017, 6, .	3.7	32

#	Article	IF	CITATIONS
127	Studies of cyclic AMP action using mutant tissue culture cells. In Vitro, 1978, 14, 140-145.	1.2	31
128	Defining the Functional Domain of Programmed Cell Death 10 through Its Interactions with Phosphatidylinositol-3,4,5-Trisphosphate. PLoS ONE, 2010, 5, e11740.	2.5	31
129	Defining MAPK Interactomes. ACS Chemical Biology, 2011, 6, 18-20.	3.4	31
130	Reovirus-Induced Alterations in Gene Expression Related to Cell Cycle Regulation. Journal of Virology, 2002, 76, 2585-2594.	3.4	30
131	Efficiently identifying genome-wide changes with next-generation sequencing data. Nucleic Acids Research, 2011, 39, e130-e130.	14.5	29
132	Differential activation and regulation of mitogen-activated protein kinases through the antigen receptor and CD40 in human B cells. European Journal of Immunology, 1999, 29, 2999-3008.	2.9	28
133	MEK Kinase 2 Binds and Activates Protein Kinase C-related Kinase 2. Journal of Biological Chemistry, 2000, 275, 24421-24428.	3.4	28
134	Kinome Profiling Identifies Druggable Targets for Novel Human Cytomegalovirus (HCMV) Antivirals. Molecular and Cellular Proteomics, 2017, 16, S263-S276.	3.8	28
135	DEVDase detection in intact apoptotic cells using the cell permeant fluorogenic substrate, (z-DEVD) ₂ -cresyl violet. BioTechniques, 2003, 35, 1080-1085.	1.8	27
136	Crizotinib inhibits NF2-associated schwannoma through inhibition of focal adhesion kinase 1. Oncotarget, 2016, 7, 54515-54525.	1.8	27
137	MEKK1 Is Required for Inducible Urokinase-type Plasminogen Activator Expression. Journal of Biological Chemistry, 2003, 278, 5941-5946.	3.4	26
138	Use of a Fluorescently Labeled Poly-Caspase Inhibitor for <i>in Vivo</i> Detection of Apoptosis Related to Vascular-Targeting Agent Arsenic Trioxide for Cancer Therapy. Technology in Cancer Research and Treatment, 2007, 6, 651-654.	1.9	26
139	Noncanonical Function of MEKK2 and MEK5 PB1 Domains for Coordinated Extracellular Signal-Regulated Kinase 5 and c-Jun N-Terminal Kinase Signaling. Molecular and Cellular Biology, 2007, 27, 4566-4577.	2.3	25
140	Colâ€F, a fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 533-539.	1.5	25
141	Adaptive Reprogramming of the Breast Cancer Kinome. Clinical Pharmacology and Therapeutics, 2014, 95, 413-415.	4.7	25
142	Irreversible JNK1-JUN inhibition by JNK-IN-8 sensitizes pancreatic cancer to 5-FU/FOLFOX chemotherapy. JCI Insight, 2020, 5, .	5.0	25
143	Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism <i>in vivo</i> using nonâ€ŧargeted metabolomics analysis. British Journal of Pharmacology, 2017, 174, 4797-4811.	5.4	24
144	Proteomic analysis defines kinase taxonomies specific for subtypes of breast cancer. Oncotarget, 2018, 9, 15480-15497.	1.8	24

#	Article	IF	CITATIONS
145	Defining the expressed breast cancer kinome. Cell Research, 2012, 22, 620-623.	12.0	23
146	Targeting the Breast Cancer Kinome. Journal of Cellular Physiology, 2017, 232, 53-60.	4.1	23
147	MEF2C regulates c-Jun but not TNF-Î \pm gene expression in stimulated mast cells. European Journal of Immunology, 2003, 33, 2903-2909.	2.9	22
148	Novel Assay Utilizing Fluorochrome-Tagged Physostigmine (Ph-F) to In Situ Detect Active Acetylcholinesterase (AChE) Induced during Apoptosis. Cell Cycle, 2005, 4, 140-147.	2.6	22
149	EPH receptor signaling as a novel therapeutic target in NF2-deficient meningioma. Neuro-Oncology, 2018, 20, 1185-1196.	1.2	22
150	Genetic and structural analysis of G protein α subunit regulatory domains. Journal of Cellular Biochemistry, 1991, 47, 136-146.	2.6	21
151	Sequential Activation of Caspases and Serine Proteases (Serpases) During Apoptosis. Cell Cycle, 2002, 1, 115-122.	2.6	21
152	Enzymatic model for receptor activation of GTP-binding regulatory proteins. Trends in Biochemical Sciences, 1987, 12, 473-477.	7.5	20
153	Epigenetic Mechanisms Regulating Adaptive Responses to Targeted Kinase Inhibitors in Cancer. Annual Review of Pharmacology and Toxicology, 2018, 58, 209-229.	9.4	20
154	Limited inhibition of multiple nodes in a driver network blocks metastasis. ELife, 2021, 10, .	6.0	20
155	PRM-LIVE with Trapped Ion Mobility Spectrometry and Its Application in Selectivity Profiling of Kinase Inhibitors. Analytical Chemistry, 2021, 93, 13791-13799.	6.5	20
156	An Intracellular Signaling Pathway Linking Lipopolysaccharide Stimulation to Cellular Responses of the Human Neutrophil. Chest, 1999, 116, 54S-55S.	0.8	19
157	Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK. PLoS ONE, 2021, 16, e0252048.	2.5	19
158	MEKK1-induced apoptosis requires TRAIL death receptor activation and is inhibited by AKT/PKB through inhibition of MEKK1 cleavage. Oncogene, 2002, 21, 6649-6656.	5.9	18
159	New strategies for targeting kinase networks in cancer. Journal of Biological Chemistry, 2021, 297, 101128.	3.4	18
160	Isolation of partial cDNAs for rat liver and muscle glycogen phosphorylase isozymes. FEBS Letters, 1986, 202, 282-288.	2.8	17
161	Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2. PLoS ONE, 2018, 13, e0197350.	2.5	17
162	UNC569 As Novel Small Molecule Mer Receptor Tyrosine Kinase Inhibitor for Treatment of ALL. Blood, 2011, 118, 2589-2589.	1.4	17

#	Article	IF	CITATIONS
163	Characterization of three intermediates in the biosynthesis of teichuronic acid of Micrococcus luteus. Archives of Biochemistry and Biophysics, 1984, 235, 679-691.	3.0	16
164	[30] Assay of MEK kinases. Methods in Enzymology, 1995, 255, 290-301.	1.0	16
165	Bombesin-like peptide receptors in human bronchial epithelial cells. Peptides, 1996, 17, 111-118.	2.4	16
166	Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell International, 2016, 16, 26.	4.1	16
167	Non-Targeted Metabolomics Analysis of the Effects of Tyrosine Kinase Inhibitors Sunitinib and Erlotinib on Heart, Muscle, Liver and Serum Metabolism In Vivo. Metabolites, 2017, 7, 31.	2.9	16
168	Kinome profiling of non-Hodgkin lymphoma identifies Tyro3 as a therapeutic target in primary effusion lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16541-16550.	7.1	16
169	Evidence for oligomeric forms of transducins alpha subunit: Formation of intermolecular alpha-alpha disulfide linkages. Biochemical and Biophysical Research Communications, 1989, 159, 651-657.	2.1	15
170	Rac2D57N, a dominant inhibitory Rac2 mutant that inhibits p38 kinase signaling and prevents surface ruffling in bone-marrow-derived macrophages. Journal of Cell Science, 2004, 117, 243-255.	2.0	15
171	Development and Validation of a High-Throughput Intrinsic ATPase Activity Assay for the Discovery of MEKK2 Inhibitors. Journal of Biomolecular Screening, 2013, 18, 388-399.	2.6	15
172	Sequence Homologies between Type 1 and Type 2A Protein Phosphatases. Molecular Endocrinology, 1987, 1, 745-748.	3.7	14
173	SIGNAL TRANSDUCTION: Scaffolding ProteinsMore Than Meets the Eye. Science, 2002, 295, 1249-1250.	12.6	14
174	Ablation of MEK Kinase 1 Suppresses Intimal Hyperplasia by Impairing Smooth Muscle Cell Migration and Urokinase Plasminogen Activator Expression in a Mouse Blood-Flow Cessation Model. Circulation, 2005, 111, 1672-1678.	1.6	14
175	Hyperosmotic Induction of Mitogenâ€Activated Protein Kinase Scaffolding. Methods in Enzymology, 2007, 428, 297-312.	1.0	13
176	Repression of Adipogenesis by Adenylyl Cyclase Stimulatory G-protein α Subunit Is Expressed within Region 146-220. Journal of Biological Chemistry, 1996, 271, 22022-22029.	3.4	12
177	Inhibitors paradoxically prime kinases. Nature Chemical Biology, 2009, 5, 448-449.	8.0	12
178	Identification of ponatinib and other known kinase inhibitors withÂpotent MEKK2 inhibitory activity. Biochemical and Biophysical Research Communications, 2015, 463, 888-893.	2.1	12
179	Acetylcholine muscarinic receptor regulation of the Ras/Raf/Map kinase pathway. Life Sciences, 1995, 56, 945-949.	4.3	11
180	Differential Regulation of CD40-Mediated Human B Cell Responses by Antibodies Directed against Different CD40 Epitopes. Cellular Immunology, 2000, 201, 109-123.	3.0	11

#	Article	IF	CITATIONS
181	Assessing adaptation of the cancer kinome in response to targeted therapies. Biochemical Society Transactions, 2014, 42, 765-769.	3.4	11
182	Application of Integrated Drug Screening/Kinome Analysis to Identify Inhibitors of Gemcitabine-Resistant Pancreatic Cancer Cell Growth. SLAS Discovery, 2018, 23, 850-861.	2.7	11
183	Inhibition of Aurora A Kinase in Combination with Chemotherapy Induces Synthetic Lethality and Overcomes Chemoresistance in Myc-Overexpressing Lymphoma. Targeted Oncology, 2019, 14, 563-575.	3.6	11
184	FOXA1 and adaptive response determinants to HER2 targeted therapy in TBCRC 036. Npj Breast Cancer, 2021, 7, 51.	5.2	11
185	Measuring Kinase Activity—A Global Challenge. Journal of Cellular Biochemistry, 2017, 118, 3595-3606.	2.6	10
186	Far away from the lamppost. PLoS Biology, 2018, 16, e3000067.	5.6	10
187	The NH2-terminal α subunit attenuator domain confers regulation of G protein activation by βγ complexes. Journal of Cellular Biochemistry, 1991, 47, 352-358.	2.6	9
188	SOX4 and SMARCA4 cooperatively regulate PI3k signaling through transcriptional activation of TGFBR2. Npj Breast Cancer, 2021, 7, 40.	5.2	9
189	Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. Journal of Biological Chemistry, 2022, 298, 101525.	3.4	9
190	High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy. Scientific Reports, 2021, 11, 17029.	3.3	8
191	Homogeneous Time-Resolved Fluorescence Resonance Energy Transfer Assay for Measurement of Phox/Bem1p (PB1) Domain Heterodimerization. Journal of Biomolecular Screening, 2008, 13, 396-405.	2.6	7
192	In Vivo Profiling Endogenous Interactions with Knock-Out in Mammalian Cells. Analytical Chemistry, 2009, 81, 1411-1417.	6.5	7
193	Bosutinib reduces the efficacy of Dasatinib in triple-negative breast cancer cell lines. Anticancer Research, 2014, 34, 1629-35.	1.1	7
194	Discovery and characterization of an iminocoumarin scaffold as an inhibitor of MEKK2 (MAP3K2). Biochemical and Biophysical Research Communications, 2018, 496, 205-211.	2.1	6
195	Amino-terminal sequence analysis of rat heart and muscle glycogen synthase: Homology to the rabbit enzyme and the implications for hormonal control. Archives of Biochemistry and Biophysics, 1989, 268, 630-636.	3.0	5
196	Activating mutations in the NH2- and COOH-terminal moieties of the Gsα subunit have dominant phenotypes and distinguishable kinetics of adenylyl cyclase stimulation. Journal of Cellular Biochemistry, 1991, 47, 359-368.	2.6	5
197	IL-8 Signal Transduction in Human Neutrophils. Annals of the New York Academy of Sciences, 1995, 766, 288-291.	3.8	5
198	Epigenetic inhibition of adaptive bypass responses to lapatinib by targeting BET Bromodomains. Molecular and Cellular Oncology, 2016, 3, e1052182.	0.7	5

#	Article	IF	CITATIONS
199	A proteasome-resistant fragment of NIK mediates oncogenic NF-κB signaling in schwannomas. Human Molecular Genetics, 2019, 28, 572-583.	2.9	5
200	Synthesis and Evaluation of Novel 1,2,6-Thiadiazinone Kinase Inhibitors as Potent Inhibitors of Solid Tumors. Molecules, 2021, 26, 5911.	3.8	4
201	<i>Nf1</i> -Mutant Tumors Undergo Transcriptome and Kinome Remodeling after Inhibition of either mTOR or MEK. Molecular Cancer Therapeutics, 2020, 19, 2382-2395.	4.1	3
202	Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer. Molecular Cancer Research, 2020, 18, 1685-1698.	3.4	3
203	Raman spectroscopy of the zeta phase zinc-iron intermetallic compound. Scripta Metallurgica Et Materialia, 1994, 31, 1445-1447.	1.0	2
204	Enhancer remodeling regulates epigenetic adaptation and resistance to MEK1/2 inhibition in triple-negative breast cancer. Molecular and Cellular Oncology, 2017, 4, e1300622.	0.7	2
205	Identification of 4â€anilinoâ€quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3) inhibitor chemotype. ChemMedChem, 2022, , .	3.2	2
206	G Proteins. ADP-ribosylating toxins and G proteins: Insights into signal transduction. Cell, 1990, 62, 627-628.	28.9	1
207	[25] Construction of mutant and chimeric G-protein α subunits. Methods in Enzymology, 1994, 237, 321-326.	1.0	1
208	CP-64131, an aminobenzazepine with cytokine-like properties, stimulates human neutrophil functions through the p38-MAPK pathway. Journal of Leukocyte Biology, 2004, 76, 477-483.	3.3	1
209	The use of rabbit polyclonal antibodies to assess neoantigenicity following viral reduction of an alpha-1-proteinase inhibitor preparation. Biologicals, 2006, 34, 199-207.	1.4	1
210	Sequence patches on MAPK surfaces define protein-protein interactions. Genome Biology, 2009, 10, 222.	9.6	1
211	Rac–MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. , 0, .		1
212	Phase II trial of the MEK1/2 inhibitor selumetinib (AZD6244) in adults with neurofibromatosis type 1 (NF1) and inoperable plexiform neurofibromas (PNs) Journal of Clinical Oncology, 2016, 34, TPS2596-TPS2596.	1.6	1
213	Role of ras in muscarinic Ml and M2 acetylcholine receptor regulation of the mitogen-activated protein kinase stimulatory pathway. Life Sciences, 1995, 56, 1030.	4.3	0
214	Landscaping a chromatin response to MEK inhibition. Cell Cycle, 2017, 16, 731-732.	2.6	0
215	DRES-08. DYNAMIC KINOME PROFILING OF GENETICALLY-DEFINED, EGFRvIII-DRIVEN MURINE ASTROCYTE MODELS OF GLIOBLASTOMA REVEALS TARGETS FOR DUAL KINASE INHIBITOR THERAPY. Neuro-Oncology, 2018, 20, vi77-vi77.	1.2	0
216	CSIG-42. HIGH THROUGHPUT KINOME AND TRANSCRIPTOME ANALYSES REVEAL NOVEL THERAPEUTIC TARGETS IN NF2-DEFICIENT MENINGIOMA. Neuro-Oncology, 2018, 20, vi52-vi52.	1.2	0

#	Article	IF	CITATIONS
217	DRES-07. DEFINING THE MECHANISMS OF ACQUIRED RESISTANCE TO TYROSINE KINASE INHIBITORS IN EGFR-DRIVEN GLIOBLASTOMAS USING INTEGRATED KINOME AND TRANSCRIPTOME PROFILING. Neuro-Oncology, 2018, 20, vi77-vi77.	1.2	0
218	Evaluation of UNC569, a Novel Small Molecule Mer Inhibitor for the Treatment of ALL in Vitro and in Vivo Blood, 2012, 120, 2607-2607.	1.4	0
219	Pharmacologic targeting of drug-induced enhancers. Oncoscience, 2017, 4, 43-44.	2.2	0
220	Abstract P3-15-01: Patients and Researchers Together (PART); a patient-centered tumor tissue collection PARTnership between patients and researchers to increase tissue donations for breast cancer research. Cancer Research, 2022, 82, P3-15-01-P3-15-01.	0.9	0