
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8553617/publications.pdf Version: 2024-02-01

I KEITH FIELELD

#	Article	IF	CITATIONS
1	Timing of the Last Glacial Maximum from observed sea-level minima. Nature, 2000, 406, 713-716.	13.7	891
2	Early Human Occupation at Devil's Lair, Southwestern Australia 50,000 Years Ago. Quaternary Research, 2001, 55, 3-13.	1.0	247
3	Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period. Nature, 2004, 428, 306-310.	13.7	210
4	Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia. Chemical Geology, 2006, 231, 38-56.	1.4	174
5	Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range. Geology, 2007, 35, 743.	2.0	174
6	Late Pleistocene Glaciation of the Kosciuszko Massif, Snowy Mountains, Australia. Quaternary Research, 2001, 55, 179-189.	1.0	167
7	Natural and anthropogenic 236U in environmental samples. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2246-2250.	0.6	166
8	Australian desert dune fields initiated with Pliocene–Pleistocene global climatic shift. Geology, 2009, 37, 51-54.	2.0	152
9	Cosmogenic 10Be and 26Al exposure ages of tors and erratics, Cairngorm Mountains, Scotland: Timescales for the development of a classic landscape of selective linear glacial erosion. Geomorphology, 2006, 73, 222-245.	1.1	141
10	Absence of Cooling in New Zealand and the Adjacent Ocean During the Younger Dryas Chronozone. Science, 2007, 318, 86-89.	6.0	139
11	Punctuated eustatic sea-level rise in the early mid-Holocene. Geology, 2010, 38, 803-806.	2.0	139
12	Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne-10Be. Geology, 2005, 33, 993.	2.0	137
13	Exposure dating and validation of periglacial weathering limits, northwest Scotland. Geology, 1998, 26, 587.	2.0	119
14	Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth and Planetary Science Letters, 2012, 349-350, 240-250.	1.8	108
15	Sediment mixing at Nonda Rock: investigations of stratigraphic integrity at an early archaeological site in northern Australia and implications for the human colonisation of the continent. Journal of Quaternary Science, 2007, 22, 449-479.	1.1	97
16	Late-surviving megafauna in Tasmania, Australia, implicate human involvement in their extinction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12150-12153.	3.3	97
17	Last Ice Age Millennial Scale Climate Changes Recorded in Huon Peninsula Corals. Radiocarbon, 2000, 42, 383-401.	0.8	89
18	Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation. Paleoceanography, 2004, 19, n/a-n/a.	3.0	81

#	Article	IF	CITATIONS
19	Soil production in heath and forest, Blue Mountains, Australia: influence of lithology and palaeoclimate. Earth Surface Processes and Landforms, 2005, 30, 923-934.	1.2	80
20	Quantifying the rate and depth dependence of bioturbation based on opticallyâ€stimulated luminescence (OSL) dates and meteoric ¹⁰ Be. Earth Surface Processes and Landforms, 2014, 39, 1188-1196.	1.2	77
21	Absorption of Aluminium-26 in Alzheimer's Disease, Measured Using Accelerator Mass Spectrometry. Dementia and Geriatric Cognitive Disorders, 2000, 11, 66-69.	0.7	73
22	Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Applied Geochemistry, 2012, 27, 1698-1709.	1.4	71
23	Cosmogenic Cl-36 dating of postglacial landsliding at The Storr, Isle of Skye, Scotland. Holocene, 1998, 8, 347-351.	0.9	70
24	In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from Lake Bonneville, Utah, shoreline features. Quaternary Geochronology, 2015, 26, 56-69.	0.6	70
25	Climatic variability in the southwest Pacific during the Last Termination (20–10kyrBP). Quaternary Science Reviews, 2006, 25, 886-903.	1.4	67
26	Plutonium from Mayak:Â Measurement of Isotope Ratios and Activities Using Accelerator Mass Spectrometry. Environmental Science & Technology, 2000, 34, 1938-1945.	4.6	61
27	Plutonium from Global Fallout Recorded in an Ice Core from the Belukha Glacier, Siberian Altai. Environmental Science & Technology, 2004, 38, 6507-6512.	4.6	61
28	Exposure-age constraints on the extent, timing and rate of retreat of the last Irish Sea ice stream. Quaternary Science Reviews, 2010, 29, 1844-1852.	1.4	59
29	Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia. Journal of Hydrology, 2010, 380, 203-221.	2.3	58
30	Holocene lake-level fluctuations in Lakes Keilambete and Gnotuk, southwestern Victoria, Australia. Holocene, 2013, 23, 784-795.	0.9	57
31	The behaviour of the Leeuwin Current offshore NW Australia during the last five glacial–interglacial cycles. Global and Planetary Change, 2011, 75, 119-132.	1.6	56
32	Determination of U-236 in sediment samples by accelerator mass spectrometry. Analyst, The, 2001, 126, 633-636.	1.7	55
33	Accelerator mass spectrometry measurement of 240Pu/239Pu isotope ratios in Novaya Zemlya and Kara Sea sediments. Applied Radiation and Isotopes, 2004, 61, 249-253.	0.7	53
34	Bedrock erosion and relief production in the northern Flinders Ranges, Australia. Earth Surface Processes and Landforms, 2007, 32, 929-944.	1.2	53
35	Stranded landscapes in the humid tropics: Earth's oldest land surfaces. Earth and Planetary Science Letters, 2019, 519, 152-164.	1.8	50
36	Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science, 2020, 370, 716-720.	6.0	49

#	Article	IF	CITATIONS
37	Dating ancient wood by high-sensitivity liquid scintillation counting and accelerator mass spectrometry—Pushing the boundaries. Quaternary Geochronology, 2006, 1, 241-248.	0.6	46
38	Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: Sediments from major rivers. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241, 79-94.	1.0	46
39	Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra. Earth and Planetary Science Letters, 2004, 227, 121-133.	1.8	45
40	Transport of low 240Pu/239Pu atom ratio plutonium-species in the Ob and Yenisey Rivers to the Kara Sea. Earth and Planetary Science Letters, 2006, 251, 33-43.	1.8	44
41	The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the Last Glacial Interval (60,000–11,700 years ago). Quaternary Science Reviews, 2010, 29, 3677-3682.	1.4	44
42	Silicon-32 as a tool for dating the recent past. Quaternary Geochronology, 2009, 4, 400-405.	0.6	42
43	Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science, 2006, 21, 779-787.	1.1	41
44	Glaciation and deglaciation of the SW Lake District, England: implications of cosmogenic 36Cl exposure dating. Proceedings of the Geologists Association, 2009, 120, 139-144.	0.6	41
45	Eroding Australia: rates and processes from Bega Valley to Arnhem Land. Geological Society Special Publication, 2010, 346, 225-241.	0.8	41
46	Uranium from German Nuclear Power Projects of the 1940s— A Nuclear Forensic Investigation. Angewandte Chemie - International Edition, 2015, 54, 13452-13456.	7.2	41
47	Landscape responses to intraplate tectonism: Quantitative constraints from 10Be nuclide abundances. Earth and Planetary Science Letters, 2007, 261, 120-133.	1.8	37
48	Concentration and characterization of plutonium in soils of Hubei in central China. Journal of Environmental Radioactivity, 2010, 101, 29-32.	0.9	37
49	Late Pleistocene glacial stratigraphy of the Kumara-Moana region, West Coast of South Island, New Zealand. Quaternary Science Reviews, 2013, 74, 139-159.	1.4	36
50	Late Pleistocene glaciation of the Mt Giluwe volcano, Papua New Guinea. Quaternary Science Reviews, 2011, 30, 2676-2689.	1.4	34
51	Erosion rates and weathering history of rock surfaces associated with Aboriginal rock art engravings (petroglyphs) on Burrup Peninsula, Western Australia, from cosmogenic nuclide measurements. Quaternary Science Reviews, 2013, 69, 98-106.	1.4	33
52	Uplift rates defined by U-series and 14C ages of serpulid-encrusted speleothems from submerged caves near Siracusa, Sicily (Italy). Quaternary Geochronology, 2009, 4, 2-10.	0.6	32
53	Plutonium isotope measurements from across continental Australia. Nuclear Instruments & Methods in Physics Research B, 2013, 294, 636-641.	0.6	32
54	Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway. Environment International, 2013, 59, 92-102.	4.8	30

#	Article	IF	CITATIONS
55	Towards a Radiocarbon Calibration for Oxygen Isotope Stage 3 Using New Zealand Kauri (Agathis) Tj ETQq1 1 0.3	784314 r 0.8	gBT_{0verloc
56	Association of plutonium with sediments from the Ob and Yenisey Rivers and Estuaries. Journal of Environmental Radioactivity, 2009, 100, 290-300.	0.9	29
57	Patterns of denudation through time in the San Bernardino Mountains, California: Implications for early-stage orogenesis. Earth and Planetary Science Letters, 2008, 276, 62-72.	1.8	28
58	Measurement of 237Np in environmental water samples by accelerator mass spectrometry. Analyst, The, 2001, 126, 58-61.	1.7	27
59	Coral reef sedimentation on Rodrigues and the Western Indian Ocean and its impact on the carbon cycle. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 101-120.	1.6	27
60	Using 3H and 14C to constrain the degree of closed-system dissolution of calcite in groundwater. Applied Geochemistry, 2013, 32, 118-128. Applied Geochemistry, 2013, 32, 118-128.	1.4	25
61	display="inline"> <mmi:mrow><mmi:mmultiscripts><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mrow></mmi:mmultiscripts></mmi:mrow>		mr 2b mrow>
62	/> chundanrows chundanro26 chundanros chundanrows chundanmutciscriptss chundanrows chundanaths Ancient groundwaters in the Amadeus Basin, Central Australia: evidence from the radio-isotope 36Cl. Journal of Hydrology, 1999, 223, 212-220.	2.3	23
63	Co-precipitated silver–metal oxide aggregates for accelerator mass spectrometry of 10Be and 26Al. Nuclear Instruments & Methods in Physics Research B, 2004, 223-224, 272-277.	0.6	23
64	Robust Radiocarbon Dating of Wood Samples by High-Sensitivity Liquid Scintillation Spectroscopy in the 50–70 kyr Age Range. Radiocarbon, 2007, 49, 379-391.	0.8	23
65	The 240Pu/239Pu atom ratio in Chinese soils. Science of the Total Environment, 2019, 678, 603-610.	3.9	23
66	Cosmogenic nuclide ages for Last Glacial Maximum moraine at Schnells Ridge, Southwest Tasmania. Quaternary Research, 2004, 61, 335-338.	1.0	22
67	Holocene evolution of the granite based Lizard Island and MacGillivray Reef systems, Northern Great Barrier Reef. Coral Reefs, 2006, 25, 555-565.	0.9	22
68	Assessment of recharge to groundwater systems in the arid southwestern part of Northern Territory, Australia, using chlorine-36. Hydrogeology Journal, 1999, 7, 393-404.	0.9	21
69	Tectonic and climatic controls of denudation rates in active orogens: The San Bernardino Mountains, California. Geomorphology, 2010, 118, 249-261.	1.1	21
70	Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean. Scientific Reports, 2017, 7, 44679.	1.6	21
71	New frontiers in glacier ice dating: Measurement of natural 32Si by AMS. Nuclear Instruments & Methods in Physics Research B, 2000, 172, 605-609.	0.6	20

52 Escarpment erosion and landscape evolution in southeastern Australia. , 2006, , .

#	Article	IF	CITATIONS
73	Age constraints on Pleistocene megafauna at Tight Entrance Cave in southwestern Australia. Quaternary Science Reviews, 2008, 27, 1784-1788.	1.4	20
74	Transport and accumulation of actinide elements in the near-shore environment: field and modelling studies. Sedimentology, 2006, 53, 237-248.	1.6	19
75	The release and persistence of radioactive anthropogenic nuclides. Geological Society Special Publication, 2014, 395, 265-281.	0.8	19
76	Seasonal Variations in Interstitial Water Transuranium Element Concentrations. Environmental Science & Sci	4.6	18
77	Geochemical changes recorded in Lynch's Crater, Northeastern Australia, over the past 50 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233, 187-203.	1.0	18
78	Geomorphic and cosmogenic nuclide constraints on escarpment evolution in an intraplate setting, Darling Escarpment, Western Australia. Earth Surface Processes and Landforms, 2011, 36, 449-459.	1.2	18
79	Comparative optical and radiocarbon dating of laminated Holocene sediments in two maar lakes: Lake Keilambete and Lake Gnotuk, south-western Victoria, Australia. Quaternary Geochronology, 2012, 9, 3-15.	0.6	17
80	Plutonium measurement using accelerator mass spectrometry: Methodology and applications. Radioactivity in the Environment, 2001, 1, 47-62.	0.2	15
81	Along-strike variation in catchment morphology and cosmogenic denudation rates reveal the pattern and history of footwall uplift, Main Gulf Escarpment, Baja California. Bulletin of the Geological Society of America, 2017, 129, 837-854.	1.6	15
82	In-situ production of natural 236U in groundwaters and ores in high-grade uranium deposits. Chemical Geology, 2015, 410, 213-222.	1.4	14
83	Tracking the ¹⁰ Be– ²⁶ Al source-area signal in sediment-routing systems of arid central Australia. Earth Surface Dynamics, 2018, 6, 329-349.	1.0	14
84	New and upgraded ionization chambers for AMS at the Australian National University. Nuclear Instruments & Methods in Physics Research B, 2019, 438, 141-147.	0.6	14
85	10Be-derived denudation rates from the Burdekin catchment: The largest contributor of sediment to the Great Barrier Reef. Geomorphology, 2015, 241, 122-134.	1.1	13
86	Decoupling of solutes and water in regional groundwater systems: The Murray Basin, Australia. Chemical Geology, 2017, 466, 466-478.	1.4	13
87	Background reduction in 236U/238U measurements. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 454-457.	0.6	11
88	CRONUS-Earth calibration samples from the Huancané II moraines, Quelccaya Ice Cap, Peru. Quaternary Geochronology, 2016, 31, 220-236.	0.6	11
89	Deposition of artificial radionuclides in sediments of Loch Etive, Scotland. Journal of Environmental Radioactivity, 2018, 187, 45-52.	0.9	11
90	Progress in AMS measurement of natural 32Si for glacier ice dating. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 739-743.	0.6	10

L KEITH FIFIELD

#	Article	IF	CITATIONS
91	High 36Cl/Cl ratios in Chernobyl groundwater. Journal of Environmental Radioactivity, 2014, 138, 19-32.	0.9	10
92	Accelerator mass spectrometry measurement of the reaction Cl35(n,γ)Cl36 at keV energies. Physical Review C, 2019, 99, .	1.1	10
93	Exposure dating (¹⁰ Be, ²⁶ Al) of natural terrain landslides in Hong Kong, China. , 2006, , .		8
94	Origin of artificial radionuclides in soil and sediment from North Wales. Journal of Environmental Radioactivity, 2016, 151, 244-249.	0.9	8
95	Differences in groundwater and chloride residence times in saline groundwater: The Barwon River Catchment of Southeast Australia. Chemical Geology, 2017, 451, 154-168.	1.4	8
96	Pre-development denudation rates for the Great Barrier Reef catchments derived using 10Be. Marine Pollution Bulletin, 2021, 172, 112731.	2.3	6
97	Plutonium isotopes in the North Western Pacific sediments coupled with radiocarbon in corals recording precise timing of the Anthropocene. Scientific Reports, 2022, 12, .	1.6	6
98	New 14C Ages on Cellulose from Diprotodon Gut Contents: Explorations in Oxidation Chemistry and Combustion. Radiocarbon, 2008, 50, 75-81.	0.8	5
99	Measurements of low-level anthropogenic radionuclides from soils around Maralinga. EPJ Web of Conferences, 2013, 63, 03010.	0.1	3
100	Reply to Watchman, Taçon and Aubert. Quaternary Science Reviews, 2014, 91, 73-75.	1.4	3
101	The age of Wolfe Creek meteorite crater (<i>Kandimalal</i>), Western Australia. Meteoritics and Planetary Science, 2019, 54, 2686-2697.	0.7	3
102	Development of 231Pa AMS measurements to improve radiological dose assessment from uranium mining and milling. Nuclear Instruments & Methods in Physics Research B, 2019, 438, 66-69.	0.6	3
103	1291 in rainwater across Argentina. Journal of Environmental Radioactivity, 2022, 248, 106871.	0.9	2
104	Timing and dynamics of Late Wolstonian Substage â€~Moreton Stadial' (MIS 6) glaciation in the English West Midlands, UK. Royal Society Open Science, 2022, 9, .	1.1	2
105	Geochemistry of artificial actinide isotopes in west Cumbrian sediments. Journal of Nuclear Science and Technology, 2002, 39, 939-942.	0.7	1
106	The Link Between the Local Bubble and Radioisotopic Signatures on Earth. , 2017, , .		1
107	Determination of total I and129I concentrations in freshwater of Argentina. EPJ Web of Conferences, 2013, 63, 03007.	0.1	0
108	Production of 21Ne in depth-profiled olivine from a 54 Ma basalt sequence, Eastern Highlands (37° S), Australia. Geochimica Et Cosmochimica Acta, 2018, 220, 276-290.	1.6	0