
## Manuel Gamero-Castano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8553473/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Electrospray propulsion: Modeling of the beams of droplets and ions of highly conducting propellants. Journal of Applied Physics, 2022, 131, .                                                       | 1.1 | 10        |
| 2  | Conformal CVD of WO3â^' on electrospun carbon nanofiber mats assisted by Joule heating. Carbon, 2022, 195, 27-34.                                                                                    | 5.4 | 3         |
| 3  | Energy barrier for ion field emission from a dielectric liquid sphere. Physical Review E, 2022, 105, .                                                                                               | 0.8 | 2         |
| 4  | Leaky-dielectric phase field model for the axisymmetric breakup of an electrified jet. Physical Review<br>Fluids, 2022, 7, .                                                                         | 1.0 | 3         |
| 5  | Electrosprays of highly conducting liquids: A study of droplet and ion emission based on retarding potential and time-of-flight spectrometry. Physical Review Fluids, 2021, 6, .                     | 1.0 | 29        |
| 6  | Controlled joule-heating of suspended glassy carbon wires for localized chemical vapor deposition.<br>Carbon, 2020, 156, 329-338.                                                                    | 5.4 | 6         |
| 7  | A numerical simulation of coaxial electrosprays. Journal of Fluid Mechanics, 2020, 885, .                                                                                                            | 1.4 | 11        |
| 8  | The minimum flow rate of electrosprays in the cone-jet mode. Journal of Fluid Mechanics, 2019, 876, 553-572.                                                                                         | 1.4 | 20        |
| 9  | Dissipation in cone-jet electrosprays and departure from isothermal operation. Physical Review E, 2019, 99, 061101.                                                                                  | 0.8 | 13        |
| 10 | Molecular dynamics of nanodroplet impact: The effect of particle resolution in the projectile model.<br>AIP Advances, 2019, 9, .                                                                     | 0.6 | 3         |
| 11 | Study of the electrostatic jet initiation in near-field electrospinning. Journal of Colloid and Interface<br>Science, 2019, 543, 106-113.                                                            | 5.0 | 11        |
| 12 | Investigation of the electrostatic focusing of beams of electrosprayed nanodroplets for microfabrication applications. AIP Advances, 2019, 9, 125006.                                                | 0.6 | 3         |
| 13 | Numerical simulation of electrospraying in the cone-jet mode. Journal of Fluid Mechanics, 2019, 859, 247-267.                                                                                        | 1.4 | 37        |
| 14 | Microfabricated Electrospray Thruster Array with High Hydraulic Resistance Channels. Journal of<br>Propulsion and Power, 2017, 33, 984-991.                                                          | 1.3 | 34        |
| 15 | Molecular dynamics of nanodroplet impact: The effect of the projectile's molecular mass on sputtering. AIP Advances, 2016, 6, .                                                                      | 0.6 | 8         |
| 16 | Plasma Activated Bonding for an Enhanced Alignment Electrostatic Lens. International Symposium on<br>Microelectronics, 2016, 2016, 000075-000078.                                                    | 0.3 | 2         |
| 17 | The Effect of the Molecular Mass on the Sputtering of Si, SiC, Ge, and GaAs by Electrosprayed<br>Nanodroplets at Impact Velocities up to 17Âkm/s. Aerosol Science and Technology, 2015, 49, 256-266. | 1.5 | 9         |
| 18 | Ultrafast physical sputtering of GaN by electrosprayed nanodroplet beams. Materials Letters, 2015, 159, 110-113.                                                                                     | 1.3 | 7         |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The effect of the molecular mass on the sputtering by electrosprayed nanodroplets. Applied Surface Science, 2015, 344, 163-170.                                        | 3.1 | 11        |
| 20 | Amorphization of hard crystalline materials by electrosprayed nanodroplet impact. Journal of Applied Physics, 2014, 116, .                                             | 1.1 | 11        |
| 21 | Atomistic modeling of the sputtering of silicon by electrosprayed nanodroplets. Journal of Applied Physics, 2014, 116, 054303.                                         | 1.1 | 10        |
| 22 | Sputtering of Si, SiC, InAs, InP, Ge, GaAs, GaSb, and GaN by electrosprayed nanodroplets. Journal of Applied Physics, 2013, 114, .                                     | 1.1 | 14        |
| 23 | The influence of the projectile's velocity and diameter on the amorphization of silicon by electrosprayed nanodroplets. Journal of Applied Physics, 2013, 114, 034304. | 1.1 | 11        |
| 24 | Amorphization of silicon induced by nanodroplet impact: A molecular dynamics study. Journal of Applied Physics, 2012, 112, .                                           | 1.1 | 17        |
| 25 | Energy dissipation in electrosprays and the geometric scaling of the transition region of cone–jets.<br>Journal of Fluid Mechanics, 2010, 662, 493-513.                | 1.4 | 29        |
| 26 | Pressure-Induced Amorphization in Silicon Caused by the Impact of Electrosprayed Nanodroplets.<br>Physical Review Letters, 2010, 105, 145701.                          | 2.9 | 38        |
| 27 | Sputtering yields of Si, SiC, and B4C under nanodroplet bombardment at normal incidence. Journal of Applied Physics, 2009, 106, 054305.                                | 1.1 | 28        |
| 28 | Sputtering of silicon by a beamlet of electrosprayed nanodroplets. Applied Surface Science, 2009, 255, 8556-8561.                                                      | 3.1 | 23        |
| 29 | Retarding potential and induction charge detectors in tandem for measuring the charge and mass of nanodroplets. Review of Scientific Instruments, 2009, 80, 053301.    | 0.6 | 34        |
| 30 | Characterization of the electrosprays of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide in vacuum. Physics of Fluids, 2008, 20, .                      | 1.6 | 51        |
| 31 | Comment on "Enhanced Stability of Electrohydrodynamic Jets through Gas Ionizationâ€, Physical<br>Review Letters, 2008, 101, 059401; author reply 059402.               | 2.9 | 1         |
| 32 | The structure of electrospray beams in vacuum. Journal of Fluid Mechanics, 2008, 604, 339-368.                                                                         | 1.4 | 58        |
| 33 | Induction charge detector with multiple sensing stages. Review of Scientific Instruments, 2007, 78, 043301.                                                            | 0.6 | 48        |
| 34 | Charge Detection Mass Spectrometer with Integrated Retarding Potential Analyzer for Study of Colloid Thruster Plumes. , 2007, , .                                      |     | 1         |
| 35 | Plasma Potential Measurements in the Plume of a Colloid Micro-Newton Thruster. , 2006, , .                                                                             |     | 2         |
|    |                                                                                                                                                                        |     |           |

Characterization and Modeling of Colloid Thruster Beams. , 2006, , .

1

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Tandem mobility mass spectrometry study of electrosprayed tetraheptyl ammonium bromide clusters.<br>Journal of the American Society for Mass Spectrometry, 2005, 16, 717-732. | 1.2 | 40        |
| 38 | Colloid Micro-Newton Thruster Development for the ST7-DRS and LISA Missions. , 2005, , .                                                                                      |     | 22        |
| 39 | Ammonium Electrolytes Quench Ion Evaporation in Colloidal Propulsion. Journal of Propulsion and Power, 2004, 20, 728-735.                                                     | 1.3 | 13        |
| 40 | Characterization of a Six-Emitter Colloid Thruster Using a Torsional Balance. Journal of Propulsion and Power, 2004, 20, 736-741.                                             | 1.3 | 30        |
| 41 | Using a Torsional Balance to Characterize Thrust at Micro Newton Levels. , 2003, , .                                                                                          |     | 3         |
| 42 | Micro Newton Colloid Thruster System Development for ST7-DRS Mission. , 2003, , .                                                                                             |     | 9         |
| 43 | Colloid Thruster Propellant Stability After Radiation Exposure. , 2003, , .                                                                                                   |     | 4         |
| 44 | A torsional balance for the characterization of microNewton thrusters. Review of Scientific<br>Instruments, 2003, 74, 4509-4514.                                              | 0.6 | 82        |
| 45 | Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime. Journal of Applied Physics, 2003, 94, 3599-3605.          | 1.1 | 300       |
| 46 | Disturbance reduction system: testing technology for precision formation control. , 2003, , .                                                                                 |     | 9         |
| 47 | Disturbance reduction system: testing technology for drag-free operation. , 2003, 4856, 9.                                                                                    |     | 7         |
| 48 | Electric-Field-Induced Ion Evaporation from Dielectric Liquid. Physical Review Letters, 2002, 89, 147602.                                                                     | 2.9 | 64        |
| 49 | Ion-induced nucleation: Measurement of the effect of embryo's size and charge state on the critical supersaturation. Journal of Chemical Physics, 2002, 117, 3345-3353.       | 1.2 | 51        |
| 50 | Electric measurements of charged sprays emitted by cone-jets. Journal of Fluid Mechanics, 2002, 459, 245-276.                                                                 | 1.4 | 89        |
| 51 | Electrospray as a Source of Nanoparticles for Efficient Colloid Thrusters. Journal of Propulsion and Power, 2001, 17, 977-987.                                                | 1.3 | 231       |
| 52 | Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000, 35, 790-803.       | 0.7 | 106       |
| 53 | Mechanisms of electrospray ionization of singly and multiply charged salt clusters. Analytica Chimica<br>Acta, 2000, 406, 67-91.                                              | 2.6 | 136       |
| 54 | Modulations in the Abundance of Salt Clusters in Electrosprays. Analytical Chemistry, 2000, 72, 1426-1429.                                                                    | 3.2 | 28        |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A CONDENSATION NUCLEUS COUNTER (CNC) SENSITIVE TO SINGLY CHARGED SUB-NANOMETER PARTICLES.<br>Journal of Aerosol Science, 2000, 31, 757-772.                      | 1.8 | 97        |
| 56 | Direct measurement of ion evaporation kinetics from electrified liquid surfaces. Journal of Chemical Physics, 2000, 113, 815-832.                                | 1.2 | 131       |
| 57 | Electron field emission from carbon nanotubes, and its relevance in space applications. , 2000, , .                                                              |     | 8         |
| 58 | Electrospray as a source of nanoparticles for efficient colloid thrusters. , 2000, , .                                                                           |     | 9         |
| 59 | On the current emitted by Taylor cone-jets of electrolytes in vacuo: Implications for liquid metal ion sources. Journal of Applied Physics, 1998, 83, 2428-2434. | 1.1 | 24        |
| 60 | Colloid thrusters for the new millennium, ST7 DRS mission. , 0, , .                                                                                              |     | 5         |