Da-Shuai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8552850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interpenetrated metal–organic frameworks with enhanced photoluminescence for selective recognition of <i>m</i> -xylene from xylene isomers. Dalton Transactions, 2022, 51, 4790-4797.	3.3	11
2	Structure modulation, selective dye adsorption and catalytic CO2 transformation of four pillared-layer metal-organic frameworks. Journal of Solid State Chemistry, 2022, 309, 122964.	2.9	3
3	Constructing [Co6(μ3-OH)6]-based pillar-layered MOF with open metal sites via steric-hindrance effect on ligand for CO2 adsorption and fixation. Inorganic Chemistry Communication, 2022, 139, 109347.	3.9	4
4	Construction of Co/Ni-based coordination polymers with three-dimensional isostructural frameworks and multiple catalytic applications. Journal of Solid State Chemistry, 2021, 296, 121979.	2.9	4
5	Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol. Journal of Solid State Chemistry, 2021, 296, 121960.	2.9	24
6	Redox property switching in MOFs with open metal sites for improved catalytic hydrogenation performance. Journal of Alloys and Compounds, 2021, 888, 161494.	5.5	13
7	Facile synthesis of holey lamellar CuO via ultrasonic chemical etching toward highly efficient hydrogenation of 4-nitrophenol under mild conditions. Journal of Solid State Chemistry, 2020, 292, 121698.	2.9	11
8	Pillar-Layered Metal–Organic Frameworks Based on a Hexaprismane [Co6(μ3-OH)6] Cluster: Structural Modulation and Catalytic Performance in Aerobic Oxidation Reaction. Inorganic Chemistry, 2020, 59, 11728-11735.	4.0	17
9	Combining unsaturated metal sites and narrow pores within a Co(<scp>ii</scp>)-based MOF towards CO ₂ separation and transformation. Dalton Transactions, 2020, 49, 2058-2062.	3.3	17
10	Construction of Cu-based MOFs with enhanced hydrogenation performance by integrating open electropositive metal sites. CrystEngComm, 2019, 21, 5382-5386.	2.6	16
11	A Cd ^{II} â€Based Metalâ€Organic Framework with <i>pcu</i> Topology as Turnâ€On Fluorescent Sensor for Al ³⁺ . Chemistry - an Asian Journal, 2019, 14, 3648-3654.	3.3	58
12	A multifunctional anionic 3D Cd(II)-MOF derived from 2D layers catenation: Organic dyes adsorption, cycloaddition of CO2 with epoxides and luminescence. Inorganic Chemistry Communication, 2019, 101, 184-187.	3.9	18
13	Nanocage-Based Porous Metal–Organic Frameworks Constructed from Icosahedrons and Tetrahedrons for Selective Gas Adsorption. ACS Applied Materials & Interfaces, 2019, 11, 20104-20109.	8.0	35
14	<i>In situ</i> aluminium ions regulation for quantum efficiency and light stability promotion in white light emitting material. RSC Advances, 2019, 9, 15265-15268.	3.6	1
15	Two Co(II) complexes based on 6-(3-pyridyl)isophthalic acid ligand: Structures, stability and catalytic applications. Polyhedron, 2018, 146, 12-18.	2.2	14
16	Rational Construction of Highly Tunable Donor–Acceptor Materials Based on a Crystalline Host–Guest Platform. Advanced Materials, 2018, 30, e1804715.	21.0	132
17	Structure modulation from unstable to stable MOFs by regulating secondary N-donor ligands. Dalton Transactions, 2018, 47, 14025-14032.	3.3	19
18	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	6.0	38

DA-SHUAI ZHANG

#	Article	IF	CITATIONS
19	Controllable assembly of three copper-organic frameworks: Structure transformation and gas adsorption properties. Polyhedron, 2017, 126, 83-91.	2.2	11
20	Three Mn(II) complexes based on 6-(3-pyridyl)isophthalic acid ligand: Structure modulation, stability and magnetic properties. Polyhedron, 2017, 129, 149-156.	2.2	6
21	A hydrothermally stable Zn(<scp>ii</scp>)-based metal–organic framework: structural modulation and gas adsorption. Dalton Transactions, 2015, 44, 15697-15702.	3.3	49
22	A unique "cage-in-cage―metal–organic framework based on nested cages from interpenetrated networks. CrystEngComm, 2015, 17, 5884-5888.	2.6	15
23	Perspectives on Electron-Assisted Reduction for Preparation of Highly Dispersed Noble Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 3-13.	6.7	91
24	Li-ion storage and gas adsorption properties of porous polyimides (PIs). RSC Advances, 2014, 4, 7506.	3.6	91
25	Targeted Structure Modulation of "Pillar-Layered―Metal–Organic Frameworks for CO2 Capture. Inorganic Chemistry, 2014, 53, 8985-8990.	4.0	82
26	Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism. Scientific Reports, 2014, 4, 6023.	3.3	32
27	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	3.3	136
28	Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC Advances, 2012, 2, 408-410.	3.6	46