NÄ^oyazÄ^o Bulut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8552310/publications.pdf

Version: 2024-02-01

85	1,157	19	29
papers	citations	h-index	g-index
85	85	85	795
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural, spectroscopic, dielectric, and magnetic properties of Fe/Cu co-doped hydroxyapatites prepared by a wet-chemical method. Physica B: Condensed Matter, 2022, 625, 413486.	2.7	12
2	Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Materials Chemistry and Physics, 2022, 276, 125444.	4.0	11
3	Theoretical and experimental characterization of Sn-based hydroxyapatites doped with Bi. Journal of the Australian Ceramic Society, 2022, 58, 803-815.	1.9	8
4	The experimental and theoretical investigation of Sm/Mg co-doped hydroxyapatites. Chemical Physics Letters, 2022, 800, 139677.	2.6	7
5	Ab Initio Study on Dopant Relaxation Mechanism in Ti and Ce Cationically Substituted in Wurtzite Gallium Nitride. Materials, 2022, 15, 3599.	2.9	0
6	Investigation of structural, spectroscopic, dielectric, magnetic, and in vitro biocompatibility properties of Sr/Ni co-doped hydroxyapatites. Ceramics International, 2022, 48, 26585-26607.	4.8	5
7	Experimental characterization and theoretical investigation of <mml:math altimg="si0006.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Zn</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Sm</mml:mi>>ini mathvariant="normal">Sm>ini mathvariant="normal">Sm>ini mathvariant="normal">Sm>ini normal">Sm>ini no</mml:mrow></mml:math>	1.9	3
8	Today Communications, 2022, 31, 103850. The effects of Zn/Fe co-dopants on the structural, thermal, magnetic, and in vitro biocompatibility properties of calcium pyrophosphate ceramics. Physica B: Condensed Matter, 2022, 643, 414123.	2.7	2
9	Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation. Journal of the Australian Ceramic Society, 2021, 57, 305-317.	1.9	18
10	Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, 2021, 646, A5.	5.1	17
11	Investigation of the effects of Ni-doping on the structural and thermal properties of ZnAl2O4 spinels prepared by wet chemical method. Journal of the Australian Ceramic Society, 2021, 57, 1155-1162.	1.9	5
12	NO+Â+ÂH2: Potential energy surface and bound state calculations. Chemical Physics Letters, 2021, 771, 138511.	2.6	2
13	Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. Journal of Molecular Structure, 2021, 1240, 130557.	3.6	15
14	Halogens effect on spectroscopy, anticancer and molecular docking studies for platinum complexes. Optik, 2021, 244, 166324.	2.9	15
15	NTCDA compounds of optoelectronic interest: Theoretical insights and experimental investigation. Chemical Physics Letters, 2021, 780, 138918.	2.6	5
16	Synthesis and Characterization of Yttrium-Doped Hydroxyapatite Nanoparticles and Their Potential Antimicrobial Activity. Journal of Biomaterials and Tissue Engineering, 2021, 11, 2087-2096.	0.1	1
17	Fe ve Ti katkılı Çift Fazlı Kalsiyum Fosfatların Sentez ve Karakterizasyonu. TÃ⅓rk DoÄŸa Ve Fen Dergisi, 2 10, 89-94.	2021,	0
18	Thermal and structural characterization of the kidney stone. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3843-3846.	3.6	2

#	Article	IF	Citations
19	Possible Formation and Destruction of the OD ⁺ Ions in the Interstellar Medium. Journal of Physical Chemistry A, 2020, 124, 6552-6561.	2.5	2
20	Effects of solvents on photonic and fluorescence properties of PtOEP phosphorescent material: Experimental and computational analysis. Journal of Molecular Liquids, 2020, 316, 113865.	4.9	6
21	Hyperfine excitation of SH ⁺ by H. Astronomy and Astrophysics, 2020, 638, A72.	5.1	9
22	Effects of strontium - erbium co-doping on the structural properties of hydroxyapatite: An Experimental and theoretical study. Ceramics International, 2020, 46, 16354-16363.	4.8	31
23	Physical chemistry and functional materials: 2019. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3817-3819.	3.6	0
24	Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. Journal of the Australian Ceramic Society, 2020, 56, 1501-1513.	1.9	17
25	Variation with graphene oxide doping of structural, optical, dielectric and thermal properties of BaCO3:ZnO nanocrystals synthesized by solgel combustion method. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3833-3841.	3.6	1
26	The effects of Mn and/or Ni dopants on the in vitro/in vivo performance, structural and magnetic properties of \hat{l}^2 -tricalcium phosphate bioceramics. Ceramics International, 2019, 45, 22752-22758.	4.8	15
27	Formation of interstellar SH ⁺ from vibrationally excited H ₂ : Quantum study of S ⁺ + H ₂ â‡,, SH ⁺ + H reaction and inelastic collision. Astronomy and Astrophysics, 2019, 626, A103.	5.1	21
28	Quantum Effects on the D + H $<$ sub $>3sub><sup>+sup> → H<sub>2sub>D<sup>+sup>+ H Deuteration Reaction and Isotopic Variants. Journal of Physical Chemistry A, 2019, 123, 8766-8775.$	2.5	18
29	Structural and optical characterization of Sm-doped ZnO nanoparticles. Bulletin of Materials Science, 2019, 42, 1.	1.7	26
30	The effects of gamma irradiation on dielectric properties of Ag/Gd co-doped hydroxyapatites. Journal of Materials Science: Materials in Electronics, 2019, 30, 10443-10453.	2.2	5
31	A new synthesis of limonene copolymer: experimental and theoretical analysis. Polymer Bulletin, 2019, 76, 3297-3327.	3.3	4
32	Green Synthesis, Structural, <i>In Vitro</i> and <i>In Vivo</i> Bioactivity Properties of ZnO Nanoparticles for Biomedical Applications. Journal of Biomaterials and Tissue Engineering, 2019, 9, 731-738.	0.1	2
33	Antimicrobial Activity of Ga-Doped Hydroxyapatite Nanostructures: Synthesis, Morphological, Spectroscopic, and Dielectric Properties. Journal of Biomaterials and Tissue Engineering, 2019, 9, 881-889.	0.1	4
34	Structural and thermal properties of Zn-containing magnesium aluminate spinels obtained by wet chemical method. Materials Science-Poland, 2019, 37, 238-243.	1.0	2
35	Comparison of experimental photonic and refractive index characteristics of the TBADN films with their theoretical counterparts. Chemical Physics Letters, 2018, 696, 12-18.	2.6	4
36	Characterization of Mg-containing hydroxyapatites synthesized by combustion method. Physica B: Condensed Matter, 2018, 537, 63-67.	2.7	55

#	Article	IF	CITATIONS
37	The effects of urea content on the structural, thermal and morphological properties of MgO nanopowders. Ceramics International, 2018, 44, 14523-14527.	4.8	12
38	The effects of Ni-addition on the crystal structure, thermal properties and morphology of Mg-based hydroxyapatites synthesized by a wet chemical method. Ceramics International, 2018, 44, 14036-14043.	4.8	25
39	An experimental and theoretical investigation of the structure of synthesized ZnO powder. Chemical Physics, 2018, 513, 273-279.	1.9	9
40	State-to-state chemistry and rotational excitation of CH+ in photon-dominated regions. Monthly Notices of the Royal Astronomical Society, 2017, 469, 612-620.	4.4	31
41	Electronic, optical, and spectroscopic analysis of TBADN organic semiconductor: Experiment and theory. Chemical Physics Letters, 2017, 678, 130-138.	2.6	30
42	Preparation and characterization of monetites co-doped with Ni/Al, Ni/Mn and Al/Mn. Materials Letters, 2017, 201, 39-42.	2.6	8
43	Temperature dependent structural and vibrational properties of hydroxyapatite: A theoretical and experimental study. Ceramics International, 2017, 43, 15899-15904.	4.8	20
44	Hyperfine excitation of OH ⁺ by H. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4477-4481.	4.4	11
45	<i>Ab initio</i> studies of the Rg–NO+(X1Σ+) van der Waals complexes (Rg = He, Ne, Ar, Kr, and Xe). Journal of Chemical Physics, 2016, 144, 204303.	3.0	11
46	The effect of simulating body fluid on the structural properties of hydroxyapatite synthesized in the presence of citric acid. Progress in Biomaterials, 2016, 5, 173-182.	4.5	24
47	Quantum and quasi-classical calculations for the S ⁺ + H ₂ (v,j) → SH ⁺ (v′,j′) + H reactive collisions. Physical Chemistry Chemical Physics, 2016, 18, 11391-11400.	. 2.8	23
48	Exchange and Inelastic OH ⁺ + H Collisions on the Doublet and Quartet Electronic States. Journal of Physical Chemistry A, 2015, 119, 12082-12089.	2.5	8
49	Accurate Time-Dependent Wave Packet Calculations for the O ⁺ + H ₂ → OH ⁺ + H Ion–Molecule Reaction. Journal of Physical Chemistry A, 2015, 119, 11951-11962.	2.5	21
50	Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl \hat{a}^{\dagger} Cl + DF reaction. Journal of Chemical Physics, 2015, 142, 214310.	3.0	7
51	OH ⁺ IN ASTROPHYSICAL MEDIA: STATE-TO-STATE FORMATION RATES, EINSTEIN COEFFICIENTS AND INELASTIC COLLISION RATES WITH He. Astrophysical Journal, 2014, 794, 33.	4.5	35
52	The effect of initial rotation in the N(2D)+H2â†'NH(3Σâ^')+H reaction. Chemical Physics, 2014, 441, 53-58.	1.9	6
53	STATE-TO-STATE QUANTUM WAVE PACKET DYNAMICS OF THE LIH + H REACTION ON TWO AB INITIO POTENTIAL ENERGY SURFACES. Astrophysical Journal, 2014, 784, 55.	4.5	16
54	$\label{eq:hamiltonian} H < sub>2 < / sub> (< i > v < / i > = 0,1) + C < sup> + < / sup> (< sup> 2 < / sup> < i > P < / i >) $	4.5	67

#	Article	IF	CITATIONS
55	Wave packet calculations on nonadiabatic effects for the O(3 <i>P</i>)+HF(1Σ+) reaction under hyperthermal conditions. Journal of Chemical Physics, 2012, 137, 114309.	3.0	1
56	Accurate quantum wave packet calculations for the F + HCl → Cl + HF reaction on the ground 12 <i>A</i> àꀲ potential energy surface. Journal of Chemical Physics, 2012, 136, 104304.	3.0	15
57	Accurate Time-Dependent Wave Packet Study of the Li + H ₂ ⁺ Reaction and Its Isotopic Variants. Journal of Physical Chemistry A, 2012, 116, 132-138.	2.5	22
58	ACCURATE TIME-DEPENDENT WAVE PACKET STUDY OF THE H ⁺ +LiH REACTION AT EARLY UNIVERSE CONDITIONS. Astrophysical Journal, 2012, 759, 31.	4.5	21
59	Nonreactive scattering of the O++H2: A time dependent wave packet approach. Chemical Physics Letters, 2012, 532, 22-26.	2.6	13
60	Influence of ro-vibrational and isotope effects on the dynamics of the C($\langle sup \rangle 3 \langle sup \rangle \langle i \rangle P \langle i \rangle + OD(\langle i \rangle X \langle i \rangle \langle sup \rangle 1 $	> k.t >S)) & action.
61	Accurate time dependent wave packet calculations for the N \pm OH reaction. Journal of Chemical Physics, 2011, 135, 104307.	3.0	21
62	The dynamics of the H ⁺ + D ₂ reaction: a comparison of quantum mechanical wavepacket, quasi-classical and statistical-quasi-classical results. Physical Chemistry Chemical Physics, 2010, 12, 1102-1115.	2.8	48
63	Quantum Mechanical Wave Packet and Quasiclassical Trajectory Calculations for the Li + H ₂ ⁺ Reaction. Journal of Physical Chemistry A, 2009, 113, 14657-14663.	2.5	18
64	Time-dependent wave packet and quasiclassical trajectory study of the C(P3)+OH(X Î2)â†'CO(X Σ1+)+H reaction at the state-to-state level. Journal of Chemical Physics, 2009, 130, 194303.	(§2) 3.0	30
65	Real wave packet and quasiclassical trajectory studies of the H ⁺ + LiH reaction. Physical Chemistry Chemical Physics, 2008, 10, 821-827.	2.8	29
66	On the dynamics of the H++D2(v =0, j =0) \hat{a} t 'HD+D+ reaction: A comparison between theory and experiment. Journal of Chemical Physics, 2008, 128, 014304.	3.0	57
67	Wave packet and quasiclassical trajectory calculations for the N(2D)+H2 reaction and its isotopic variants. Chemical Physics, 2007, 332, 119-131.	1.9	22
68	Time-Dependent Quantum Wave Packet Calculations of Three-Dimensional He â^' O2 Inelastic Scattering. Journal of Chemical Theory and Computation, 2006, 2, 59-63.	5. 3	1
69	Quantum wave packet study of N(2D) + H2 reactive scattering. International Journal of Quantum Chemistry, 2006, 106, 833-838.	2.0	7
70	A detailed quantum mechanical and quasiclassical trajectory study on the dynamics of the H++H2→H2+H+ exchange reaction. Journal of Chemical Physics, 2006, 125, 094314.	3.0	70
71	Quantum wave packet study of $S(1D)+HD$ reaction. Computational and Theoretical Chemistry, 2005, 723, 189-194.	1.5	12
72	Quantum wave packet study of S(1D)+D2â†'SD+D reaction. Chemical Physics, 2005, 309, 231-237.	1.9	5

#	ARTICLEM wave packet study of <mml:math <="" altimg="si4.gif" display="inline" overflow="scroll" th=""><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
73	xmins:xocs="nttp://www.eisevier.com/xmi/xocs/dtd" xmins:xs="nttp://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/shucci-bib/dtd" xmlns:	2.6	4
74	Quantum wave packet calculation of reaction probabilities, cross sections, and rate constants for the C(1D) + HD reaction. International Journal of Quantum Chemistry, 2005, 105, 478-484.	2.0	11
75	Existence of the transformation operator by the decomposition method. Applicable Analysis, 2005, 84, 713-719.	1.3	1
76	TIME-DEPENDENT QUANTUM MECHANICAL TREATMENT OF He–CO INELASTIC SCATTERING. Journal of Theoretical and Computational Chemistry, 2004, 03, 291-303.	1.8	1
77	Reactive and inelastic scattering probabilities for the Cl+H2 scattering: time-dependent calculations. Computational and Theoretical Chemistry, 2004, 676, 185-192.	1.5	3
78	Quantum wave packet study of the insertion reaction S+H2. Computational and Theoretical Chemistry, 2004, 710, 127-132.	1.5	2
79	Quantum mechanical three-dimensional wavepacket study of the O(1D)+ClHâ†'ClO+H reaction. Computational and Theoretical Chemistry, 2003, 625, 177-187.	1.5	7
80	A quantum wavepacket study of three-dimensional Ne—H+2scattering. Molecular Physics, 2003, 101, 1901-1909.	1.7	2
81	A quantum wave packet study of three-dimensional inelastic scattering: Heâ€"H2. Molecular Physics, 2002, 100, 561-567.	1.7	6
82	Time-dependent quantum study of three-dimensional inelastic scattering of l–H 2. Computational and Theoretical Chemistry, 2002, 584, 149-157.	1.5	2
83	A quantum wave packet study of He-H2 inelastic scattering. International Journal of Quantum Chemistry, 2000, 79, 274-279.	2.0	4
84	An experimental and theoretical investigation of Co-containing hydroxyapatites prepared at different temperatures. Journal of the Australian Ceramic Society, 0 , , .	1.9	0
85	NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu. International Journal of Innovative Engineering Applications, 0, , .	0.4	O