
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8552105/publications.pdf Version: 2024-02-01

ΕλΗΙΟ ΔΟΙΛΜ

#	Article	IF	CITATIONS
1	Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners. Journal of Cleaner Production, 2021, 292, 126032.	4.6	204
2	Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Construction and Building Materials, 2021, 308, 125021.	3.2	166
3	A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC). Applied Sciences (Switzerland), 2020, 10, 7330.	1.3	145
4	Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm. Materials, 2021, 14, 794.	1.3	130
5	Applications of Gene Expression Programming and Regression Techniques for Estimating Compressive Strength of Bagasse Ash based Concrete. Crystals, 2020, 10, 737.	1.0	109
6	Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 2021, 306, 124762.	3.2	109
7	Compressive Strength Prediction via Gene Expression Programming (GEP) and Artificial Neural Network (ANN) for Concrete Containing RCA. Buildings, 2021, 11, 324.	1.4	107
8	Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials, 2020, 13, 1075.	1.3	101
9	Applications of Gene Expression Programming for Estimating Compressive Strength of High-Strength Concrete. Advances in Civil Engineering, 2020, 2020, 1-23.	0.4	97
10	New Prediction Model for the Ultimate Axial Capacity of Concrete-Filled Steel Tubes: An Evolutionary Approach. Crystals, 2020, 10, 741.	1.0	87
11	Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Materials, 2021, 14, 7531.	1.3	75
12	Compressive Strength of Fly-Ash-Based Geopolymer Concrete by Gene Expression Programming and Random Forest. Advances in Civil Engineering, 2021, 2021, 1-17.	0.4	74
13	Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Studies in Construction Materials, 2022, 16, e00840.	0.8	74
14	Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials. Materials, 2021, 14, 5762.	1.3	67
15	Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers. Journal of Building Engineering, 2021, 33, 101492.	1.6	66
16	A Comparative Study for the Prediction of the Compressive Strength of Self-Compacting Concrete Modified with Fly Ash. Materials, 2021, 14, 4934.	1.3	66
17	A step towards sustainable glass fiber reinforced concrete utilizing silica fume and waste coconut shell aggregate. Scientific Reports, 2021, 11, 12822.	1.6	62
18	Potential use of recycled plastic and rubber aggregate in cementitious materials for sustainable construction: A review. Journal of Cleaner Production, 2021, 329, 129736.	4.6	58

#	Article	IF	CITATIONS
19	Evaluating the influence of fly ash and waste glass on the characteristics of coconut fibers reinforced concrete. Structural Concrete, 2023, 24, 2440-2459.	1.5	57
20	Effect of Incorporation of Rice Husk Ash Instead of Cement on the Performance of Steel Fibers Reinforced Concrete. Frontiers in Materials, 2021, 8, .	1.2	52
21	Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms. Polymers, 2021, 13, 3389.	2.0	52
22	Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Polymers, 2022, 14, 30.	2.0	52
23	Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. Journal of Cleaner Production, 2022, 348, 131285.	4.6	51
24	Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms. Materials, 2022, 15, 647.	1.3	50
25	A scientometric review of waste material utilization in concrete for sustainable construction. Case Studies in Construction Materials, 2021, 15, e00683.	0.8	48
26	New prediction models for the compressive strength and dry-thermal conductivity of bio-composites using novel machine learning algorithms. Journal of Cleaner Production, 2022, 350, 131364.	4.6	48
27	A Step towards Sustainable Self-Compacting Concrete by Using Partial Substitution of Wheat Straw Ash and Bentonite Clay Instead of Cement. Sustainability, 2021, 13, 824.	1.6	47
28	A Study on the Mechanical Characteristics of Glass and Nylon Fiber Reinforced Peach Shell Lightweight Concrete. Materials, 2021, 14, 4488.	1.3	46
29	Simulation of Depth of Wear of Eco-Friendly Concrete Using Machine Learning Based Computational Approaches. Materials, 2022, 15, 58.	1.3	45
30	Application of Soft Computing Techniques to Predict the Strength of Geopolymer Composites. Polymers, 2022, 14, 1074.	2.0	43
31	Mechanical and durability characteristics of sustainable coconut fibers reinforced concrete with incorporation of marble powder. Materials Research Express, 2021, 8, 075505.	0.8	39
32	Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques. Materials, 2021, 14, 7034.	1.3	39
33	Prediction of Compressive Strength of Rice Husk Ash Concrete through Different Machine Learning Processes. Crystals, 2021, 11, 352.	1.0	38
34	A systematic review of waste materials in cement-based composites for construction applications. Journal of Building Engineering, 2022, 45, 103447.	1.6	38
35	Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete. Materials, 2022, 15, 3430.	1.3	38
36	Machine learning modeling integrating experimental analysis for predicting the properties of sugarcane bagasse ash concrete. Construction and Building Materials, 2022, 314, 125634.	3.2	37

#	Article	IF	CITATIONS
37	Sustainable approach of using sugarcane bagasse ash in cement-based composites: A systematic review. Case Studies in Construction Materials, 2021, 15, e00698.	0.8	35
38	Experimental Investigation of NaOH and KOH Mixture in SCBA-Based Geopolymer Cement Composite. Materials, 2020, 13, 3437.	1.3	33
39	Experimental study on the properties improvement of hybrid graphene oxide fiber-reinforced composite concrete. Diamond and Related Materials, 2022, 124, 108883.	1.8	33
40	A comparative study on performance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortar. AEJ - Alexandria Engineering Journal, 2020, 59, 369-379.	3.4	32
41	Compressive strength prediction of rice husk ash using multiphysics genetic expression programming. Ain Shams Engineering Journal, 2022, 13, 101593.	3.5	32
42	A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review. Case Studies in Construction Materials, 2022, 16, e00830.	0.8	32
43	A scientometric analysis approach to analyze the present research on recycled aggregate concrete. Journal of Building Engineering, 2022, 46, 103679.	1.6	31
44	Life Cycle Impact Assessment of Recycled Aggregate Concrete, Geopolymer Concrete, and Recycled Aggregate-Based Geopolymer Concrete. Sustainability, 2021, 13, 13515.	1.6	30
45	Performance Evaluation of Soft Computing for Modeling the Strength Properties of Waste Substitute Green Concrete. Sustainability, 2021, 13, 2867.	1.6	29
46	Potential use of waste eggshells in cement-based materials: A bibliographic analysis and review of the material properties. Construction and Building Materials, 2022, 344, 128143.	3.2	29
47	Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence. Materials, 2022, 15, 39.	1.3	27
48	Performance of Foundry Sand Concrete under Ambient and Elevated Temperatures. Materials, 2019, 12, 2645.	1.3	25
49	Forecasting Strength of CFRP Confined Concrete Using Multi Expression Programming. Materials, 2021, 14, 7134.	1.3	25
50	Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete. Advances in Civil Engineering, 2021, 2021, 1-15.	0.4	24
51	Comparative study of mechanical properties between irradiated and regular plastic waste as a replacement of cement and fine aggregate for manufacturing of green concrete. Ain Shams Engineering Journal, 2022, 13, 101563.	3.5	23
52	Experimental Study on Mechanical Performance of Recycled Fine Aggregate Concrete Reinforced With Discarded Carbon Fibers. Frontiers in Materials, 2021, 8, .	1.2	23
53	Investigating BIM Implementation Barriers and Issues in Pakistan Using ISM Approach. Applied Sciences (Switzerland), 2020, 10, 7250.	1.3	22
54	Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-Ensemble Machine-Learning Techniques. Materials, 2022, 15, 3478.	1.3	21

#	Article	IF	CITATIONS
55	Flexural strength improvement in bamboo reinforced concrete beams subjected to pure bending. Journal of Building Engineering, 2020, 31, 101289.	1.6	20
56	Mechanical and durability characteristics of sustainable concrete modified with partial substitution of waste foundry sand. Structural Concrete, 2021, 22, 2775-2790.	1.5	19
57	A comprehensive review on fire damage assessment of reinforced concrete structures. Case Studies in Construction Materials, 2022, 16, e00843.	0.8	18
58	Prediction of Compressive Strength of Fly-Ash-Based Concrete Using Ensemble and Non-Ensemble Supervised Machine-Learning Approaches. Applied Sciences (Switzerland), 2022, 12, 361.	1.3	18
59	Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete. Crystals, 2021, 11, 558.	1.0	16
60	Impact Resistance of Styrene–Butadiene Rubber (SBR) Latex-Modified Fiber-Reinforced Concrete: The Role of Aggregate Size. Materials, 2022, 15, 1283.	1.3	15
61	Self-Fibers Compacting Concrete Properties Reinforced with Propylene Fibers. Science and Engineering of Composite Materials, 2021, 28, 64-72.	0.6	13
62	Multigene Expression Programming Based Forecasting the Hardened Properties of Sustainable Bagasse Ash Concrete. Materials, 2021, 14, 5659.	1.3	13
63	FE Modelling and Analysis of Beam Column Joint Using Reactive Powder Concrete. Crystals, 2021, 11, 1372.	1.0	12
64	Effect of Quarry Rock Dust as a Binder on the Properties of Fly Ash and Slag-Based Geopolymer Concrete Exposed to Ambient and Elevated Temperatures. Applied Sciences (Switzerland), 2021, 11, 9192.	1.3	11
65	Effect of Recycled Coarse Aggregate and Bagasse Ash on Two-Stage Concrete. Crystals, 2021, 11, 556.	1.0	10
66	Axial Compressive Strength Models of Eccentrically-Loaded Rectangular Reinforced Concrete Columns Confined with FRP. Materials, 2021, 14, 3498.	1.3	10
67	Sodium Phosphate Post-treatment on Al Coating: Morphological and Corrosion Study. Journal of Thermal Spray Technology, 2019, 28, 1511-1531.	1.6	9
68	Effect of Sodium Phosphate and Calcium Nitrate Sealing Treatment on Microstructure and Corrosion Resistance of Wire Arc Sprayed Aluminum Coatings. Coatings, 2020, 10, 33.	1.2	9
69	Role of L-arginine on the formation and breakdown of passive film onto the steel rebars surface in chloride contaminated concrete pore solution. Journal of Molecular Liquids, 2021, 337, 116454.	2.3	9
70	Coupled effect of poly vinyl alcohol and fly ash on mechanical characteristics of concrete. Ain Shams Engineering Journal, 2022, 13, 101633.	3.5	9
71	Manufacturing of Sustainable Untreated Coal Ash Masonry Units for Structural Applications. Materials, 2022, 15, 4003.	1.3	8
72	Elevated Temperature Performance of Reactive Powder Concrete Containing Recycled Fine Aggregates. Materials, 2020, 13, 3748.	1.3	7

#	Article	IF	CITATIONS
73	Numerical Analysis of Piled-Raft Foundations on Multi-Layer Soil Considering Settlement and Swelling. Buildings, 2022, 12, 356.	1.4	6
74	Coupled Effect of Coarse Aggregate Type and Silica Fume on Creep Coefficients of High-Strength Concrete. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	4
75	Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results. Computers and Concrete, 2016, 17, 739-760.	0.7	4
76	Concrete by Preplaced Aggregate Method Using Silica Fume and Polypropylene Fibres. Materials, 2022, 15, 1997.	1.3	4
77	Bond behaviour of highâ€strength concrete flexural member under low cyclic fatigue loading. Fatigue and Fracture of Engineering Materials and Structures, 2013, 36, 602-613.	1.7	3
78	Seismic Hazard Assessment of Shigo Kas Hydro-Power Project (Khyber Pakhtunkhwa, Pakistan). Buildings, 2021, 11, 349.	1.4	3
79	Mechanical properties and durability assessment of nylon fiber reinforced self-compacting concrete. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502110628.	0.5	3
80	Eco-Friendly Incorporation of Crumb Rubber and Waste Bagasse Ash in Bituminous Concrete Mix. Materials, 2022, 15, 2509.	1.3	3
81	Economical-Structural Performance of Steel Moment Resisting Building Frames Using the Section Variation Technique. Revista De La Construccion, 2014, 13, 41-46.	0.5	2
82	Coupled effect of coarse aggregate and micro-silica on the relation between strength and elasticity of high performance concrete. Construction and Building Materials, 2018, 175, 321-332.	3.2	2
83	Morphological and corrosion studies of ammonium phosphate and caesium nitrate treated Al coating deposited by arc thermal spray process. Surfaces and Interfaces, 2021, 22, 100885.	1.5	2
84	Axial Behavior of Concrete-Filled Double-Skin Tubular Stub Columns Incorporating PVC Pipes. Crystals, 2021, 11, 1434.	1.0	2
85	Concrete filled double steel tube columns incorporating UPVC pipes under uniaxial compressive load at ambient and elevated temperature. Case Studies in Construction Materials, 2022, 16, e00907.	0.8	2
86	Coupled effect of waste tire rubber and steel fibers on the mechanical properties of concrete. Materials Science-Poland, 2022, 40, 49-59.	0.4	1