## Antonio Galina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551906/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent<br>Mechanism. Cell Metabolism, 2016, 23, 1127-1139.                                                                                         | 7.2 | 581       |
| 2  | Mitochondrial Bound Hexokinase Activity as a Preventive Antioxidant Defense. Journal of Biological Chemistry, 2004, 279, 39846-39855.                                                                                                      | 1.6 | 245       |
| 3  | Mitochondrial Creatine Kinase Activity Prevents Reactive Oxygen Species Generation. Journal of Biological Chemistry, 2006, 281, 37361-37371.                                                                                               | 1.6 | 167       |
| 4  | Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate1. Biochemical Journal, 2009, 417, 717-726.                                                                                                                       | 1.7 | 155       |
| 5  | Altered Oxygen Metabolism Associated to Neurogenesis of Induced Pluripotent Stem Cells Derived from a Schizophrenic Patient. Cell Transplantation, 2012, 21, 1547-1559.                                                                    | 1.2 | 150       |
| 6  | Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity*. Critical Care Medicine, 2011, 39, 1056-1063.                              | 0.4 | 148       |
| 7  | Mesenchymal stem cells and cell-derived extracellular vesicles protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Journal of Biological Chemistry, 2018, 293, 1957-1975.                 | 1.6 | 146       |
| 8  | Succinate dehydrogenase (mitochondrial complex <scp>II</scp> ) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytologist, 2015, 208, 776-789.                                       | 3.5 | 129       |
| 9  | Sepsis induces brain mitochondrial dysfunction. Critical Care Medicine, 2008, 36, 1925-1932.                                                                                                                                               | 0.4 | 125       |
| 10 | Zika virus infection leads to mitochondrial failure, oxidative stress and DNA damage in human iPSC-derived astrocytes. Scientific Reports, 2020, 10, 1218.                                                                                 | 1.6 | 95        |
| 11 | Extracellular vesicles derived from human Wharton's jelly mesenchymal stem cells protect<br>hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers. Stem<br>Cell Research and Therapy, 2019, 10, 332. | 2.4 | 86        |
| 12 | Amyloid-β Triggers the Release of Neuronal Hexokinase 1 from Mitochondria. PLoS ONE, 2010, 5, e15230.                                                                                                                                      | 1.1 | 86        |
| 13 | Phosphoglucomutase Is an in Vivo Lithium Target in Yeast. Journal of Biological Chemistry, 2001, 276, 37794-37801.                                                                                                                         | 1.6 | 73        |
| 14 | Reactive oxygen species generation is modulated by mitochondrial kinases: Correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie, 2008, 90, 1566-1577.                                                           | 1.3 | 68        |
| 15 | How does the metabolism of tumour cells differ from that of normal cells. Bioscience Reports, 2013, 33, .                                                                                                                                  | 1.1 | 59        |
| 16 | Reactive Oxygen Species Production by Potato Tuber Mitochondria Is Modulated by Mitochondrially<br>Bound Hexokinase Activity. Plant Physiology, 2009, 149, 1099-1110.                                                                      | 2.3 | 54        |
| 17 | Subcellular distribution and kinetic properties of cytosolic and non ytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation. Journal of Experimental Botany, 2001, 52, 1191-1201.                           | 2.4 | 51        |
| 18 | Glucose metabolism during embryogenesis of the hard tick Boophilus microplus. Comparative<br>Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, 528-533.                                                   | 0.8 | 51        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mitochondrial Dysfunction Induced by Different Organochalchogens Is Mediated by Thiol Oxidation<br>and Is Not Dependent of the Classical Mitochondrial Permeability Transition Pore Opening.<br>Toxicological Sciences, 2010, 117, 133-143. | 1.4 | 48        |
| 20 | Energy Metabolism in H460 Lung Cancer Cells: Effects of Histone Deacetylase Inhibitors. PLoS ONE, 2011, 6, e22264.                                                                                                                          | 1.1 | 45        |
| 21 | Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase. Journal of Bioenergetics and Biomembranes, 2012, 44, 39-49.                                              | 1.0 | 38        |
| 22 | Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti<br>Mosquito. PLoS ONE, 2009, 4, e7854.                                                                                                   | 1.1 | 36        |
| 23 | High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles. PLoS ONE, 2015, 10, e0131766.                                                   | 1.1 | 33        |
| 24 | Modulation of Trypanosoma rangeli ecto-phosphatase activity by hydrogen peroxide. Free Radical<br>Biology and Medicine, 2009, 47, 152-158.                                                                                                  | 1.3 | 31        |
| 25 | Neuroprotection from optic nerve injury and modulation of oxidative metabolism by transplantation<br>of active mitochondria to the retina. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020,<br>1866, 165686.               | 1.8 | 31        |
| 26 | Insulin prevents mitochondrial generation of H2O2 in rat brain. Experimental Neurology, 2013, 247, 66-72.                                                                                                                                   | 2.0 | 28        |
| 27 | Hexokinase activity alters sugar-nucleotide formation in maize root homogenates. Phytochemistry, 2000, 53, 29-37.                                                                                                                           | 1.4 | 27        |
| 28 | Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury:<br>Involvement of mitochondrial function. Biochimie, 2014, 105, 172-181.                                                            | 1.3 | 25        |
| 29 | The synergism of high-intensity intermittent exercise and every-other-day intermittent fasting regimen on energy metabolism adaptations includes hexokinase activity and mitochondrial efficiency. PLoS ONE, 2018, 13, e0202784.            | 1.1 | 24        |
| 30 | Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber<br>mitochondria in an oxygen tension-independent manner. Biochemical Journal, 2013, 449, 263-273.                                                   | 1.7 | 23        |
| 31 | Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity. International Journal of Biochemistry and Cell Biology, 2014, 54, 266-271.                                  | 1.2 | 23        |
| 32 | The Impact of Stem Cells on Electron Fluxes, Proton Translocation, and ATP Synthesis in Kidney Mitochondria after Ischemia/Reperfusion. Cell Transplantation, 2014, 23, 207-220.                                                            | 1.2 | 21        |
| 33 | Molecular characterisation of a NADH ubiquinone oxidoreductase subunit 5 from Schistosoma mansoni and inhibition of mitochondrial respiratory chain function by testosterone. Molecular and Cellular Biochemistry, 1999, 202, 149-158.      | 1.4 | 18        |
| 34 | Proton Transport in Maize Tonoplasts Supported by Fructose-1,6-Bisphosphate Cleavage.<br>Pyrophosphate-Dependent Phosphofructokinase as a Pyrophosphate-Regenerating System. Plant<br>Physiology, 2003, 133, 885-892.                       | 2.3 | 18        |
| 35 | Physical Exercise Exacerbates Memory Deficits Induced by Intracerebroventricular STZ but Improves<br>Insulin Regulation of H2O2 Production in Mice Synaptosomes. Journal of Alzheimer's Disease, 2012, 30,<br>889-898.                      | 1.2 | 18        |
| 36 | Unveiling the effects of berenil, a DNA-binding drug, on Trypanosoma cruzi: implications for kDNA ultrastructure and replication. Parasitology Research, 2015, 114, 419-430.                                                                | 0.6 | 18        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Decrement in resting and insulinâ€stimulated soleus muscle mitochondrial respiration is an early event<br>in dietâ€induced obesity in mice. Experimental Physiology, 2019, 104, 306-321.                                                       | 0.9 | 18        |
| 38 | Expression Profile of Rat Hippocampal Neurons Treated with the Neuroprotective Compound<br>2,4-Dinitrophenol: Up-Regulation of cAMP Signaling Genes. Neurotoxicity Research, 2010, 18, 112-123.                                                | 1.3 | 17        |
| 39 | The Symbiotic Bacterium Fuels the Energy Metabolism of the Host Trypanosomatid Strigomonas culicis. Protist, 2017, 168, 253-269.                                                                                                               | 0.6 | 17        |
| 40 | 3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity. International Journal of Biochemistry and Cell Biology, 2012, 44, 801-807.                                                   | 1.2 | 16        |
| 41 | Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells. PeerJ, 2015, 3, e1486.                                                                                                             | 0.9 | 16        |
| 42 | Brown adipose tissue mitochondria: modulation by GDP and fatty acids depends on the respiratory substrates. Bioscience Reports, 2012, 32, 53-59.                                                                                               | 1.1 | 15        |
| 43 | Short-term starvation is a strategy to unravel the cellular capacity of oxidizing specific exogenous/endogenous substrates in mitochondria. Journal of Biological Chemistry, 2017, 292, 14176-14187.                                           | 1.6 | 15        |
| 44 | Mitotherapy: Unraveling a Promising Treatment for Disorders of the Central Nervous System and<br>Other Systemic Conditions. Cells, 2021, 10, 1827.                                                                                             | 1.8 | 15        |
| 45 | Pluripotent stem cells as a model to study oxygen metabolism in neurogenesis and neurodevelopmental disorders. Archives of Biochemistry and Biophysics, 2013, 534, 3-10.                                                                       | 1.4 | 14        |
| 46 | Glutamine Therapy Reduces Inflammation and Extracellular Trap Release in Experimental Acute<br>Respiratory Distress Syndrome of Pulmonary Origin. Nutrients, 2019, 11, 831.                                                                    | 1.7 | 14        |
| 47 | Guanosine Neuroprotection of Presynaptic Mitochondrial Calcium Homeostasis in a Mouse Study with Amyloid-β Oligomers. Molecular Neurobiology, 2020, 57, 4790-4809.                                                                             | 1.9 | 14        |
| 48 | Mesenchymal Stromal Cells From Emphysematous Donors and Their Extracellular Vesicles Are Unable<br>to Reverse Cardiorespiratory Dysfunction in Experimental Severe Emphysema. Frontiers in Cell and<br>Developmental Biology, 2021, 9, 661385. | 1.8 | 14        |
| 49 | Sugar phosphorylation modulates ADP inhibition of maize mitochondrial hexokinase. Physiologia<br>Plantarum, 1999, 105, 17-23.                                                                                                                  | 2.6 | 13        |
| 50 | Hepatic Glycogen Synthesis in the Absence of Glucokinase. Journal of Biological Chemistry, 2008, 283, 5642-5649.                                                                                                                               | 1.6 | 13        |
| 51 | Maternal intake of <i>trans</i> -unsaturated or interesterified fatty acids during pregnancy and<br>lactation modifies mitochondrial bioenergetics in the liver of adult offspring in mice. British Journal<br>of Nutrition, 2017, 118, 41-52. | 1.2 | 13        |
| 52 | Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose<br>phosphorylation and redox metabolism in rat brain. Free Radical Biology and Medicine, 2020, 160,<br>796-806.                               | 1.3 | 13        |
| 53 | Heat of PPi Hydrolysis Varies Depending on the Enzyme Used. Journal of Biological Chemistry, 2004, 279, 45613-45617.                                                                                                                           | 1.6 | 11        |
| 54 | Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular<br>Losses. Molecular Neurobiology, 2018, 55, 8668-8679.                                                                                          | 1.9 | 11        |

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Coupling of GABA Metabolism to Mitochondrial Glucose Phosphorylation. Neurochemical Research, 2022, 47, 470-480.                                                                                                                                                                   | 1.6 | 11        |
| 56 | Rapid regulation of substrate use for oxidative phosphorylation during a single session of high<br>intensity interval or aerobic exercises in different rat skeletal muscles. Comparative Biochemistry and<br>Physiology - B Biochemistry and Molecular Biology, 2018, 217, 40-50. | 0.7 | 10        |
| 57 | Mitochondriaâ€coupled glucose phosphorylation develops after birth to modulate H 2 O 2 release and calcium handling in rat brain. Journal of Neurochemistry, 2019, 149, 624-640.                                                                                                   | 2.1 | 10        |
| 58 | Mitochondria-Bound Hexokinase (mt-HK) Activity Differ in Cortical and Hypothalamic Synaptosomes:<br>Differential Role of mt-HK in H2O2 Depuration. Molecular Neurobiology, 2018, 55, 5889-5900.                                                                                    | 1.9 | 9         |
| 59 | 2,4-dinitrophenol induces neural differentiation of murine embryonic stem cells. Stem Cell Research, 2013, 11, 1407-1416.                                                                                                                                                          | 0.3 | 8         |
| 60 | Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system. FEBS Letters, 1992, 308, 197-201.                                                                                                      | 1.3 | 7         |
| 61 | Valproate Disturbs Morphology and Mitochondrial Membrane Potential in Human Neural Cells.<br>Applied in Vitro Toxicology, 2015, 1, 254-261.                                                                                                                                        | 0.6 | 6         |
| 62 | Energization by multiple substrates and calcium challenge reveal dysfunctions in brain mitochondria in a model related to acute psychosis. Journal of Bioenergetics and Biomembranes, 2020, 52, 1-15.                                                                              | 1.0 | 6         |
| 63 | Acute Myocardial Infarction Reduces Respiration in Rat Cardiac Fibers, despite Adipose Tissue<br>Mesenchymal Stromal Cell Transplant. Stem Cells International, 2020, 2020, 1-19.                                                                                                  | 1.2 | 6         |
| 64 | Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain, Behavior, and Immunity, 2021, 92, 90-101.                                                                                                                                                 | 2.0 | 6         |
| 65 | Type 2 diabetes mellitus alters cardiac mitochondrial content and function in a non-obese mice model.<br>Anais Da Academia Brasileira De Ciencias, 2020, 92, e20191340.                                                                                                            | 0.3 | 6         |
| 66 | The Maxwell Demon in Biological Systems Annals of the New York Academy of Sciences, 1992, 671, 19-31.                                                                                                                                                                              | 1.8 | 5         |
| 67 | Characterization of non-cytosolic hexokinase activity in white skeletal muscle from goldfish<br>( <i>Carassius auratus</i> L.) and the effect of cold acclimation. Bioscience Reports, 2010, 30, 413-423.                                                                          | 1.1 | 5         |
| 68 | Mortality of septic shock patients is associated with impaired mitochondrial oxidative coupling efficiency in lymphocytes: a prospective cohort study. Intensive Care Medicine Experimental, 2021, 9, 39.                                                                          | 0.9 | 5         |
| 69 | 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis.<br>Experimental Parasitology, 2021, 229, 108154.                                                                                                                                   | 0.5 | 5         |
| 70 | Physical exercise improves mitochondrial function in ovariectomized rats. Journal of Endocrinology, 2022, 254, 77-90.                                                                                                                                                              | 1.2 | 5         |
| 71 | Intense physical exercise potentiates glucose inhibitory effect over food intake of male Wistar rats.<br>Experimental Physiology, 2018, 103, 1076-1086.                                                                                                                            | 0.9 | 3         |
| 72 | Inhibition of energy metabolism by 3-bromopyruvate in the hard tick Rhipicephalus microplus.<br>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 218, 55-61.                                                                                   | 1.3 | 3         |

| #  | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Protocol to Study Mitochondrial Function in Human Neural Progenitors and iPSCâ€Derived<br>Astrocytes. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al<br>], 2020, 85, e97.                                                                                       | 1.1 | 3         |
| 74 | NOD Mice Recapitulate the Cardiac Disturbances Observed in Type 1 Diabetes. Journal of Cardiovascular Translational Research, 2021, 14, 271-282.                                                                                                                                                              | 1.1 | 3         |
| 75 | Dopamine signaling impairs ROS modulation by mitochondrial hexokinase in human neural progenitor cells. Bioscience Reports, 2021, 41, .                                                                                                                                                                       | 1.1 | 3         |
| 76 | Maize tonoplast PPi-dependent H+/Ca2+ exchange: two Ks for Ca2+ and inhibition by thapsigargin.<br>Biochemical and Biophysical Research Communications, 2003, 307, 472-476.                                                                                                                                   | 1.0 | 2         |
| 77 | The yeast protein Ubx4p contributes to mitochondrial respiration and lithium–galactose–mediated activation of the unfolded protein response. Journal of Biological Chemistry, 2020, 295, 3773-3782.                                                                                                           | 1.6 | 2         |
| 78 | Bone Marrow Mononuclear Cells Restore Normal Mitochondrial Ca <sup>2+</sup> Handling and<br>Ca <sup>2+</sup> -Induced Depolarization of the Internal Mitochondrial Membrane by Inhibiting the<br>Permeability Transition Pore After Ischemia/Reperfusion. Cell Transplantation, 2022, 31,<br>096368972210858. | 1.2 | 1         |
| 79 | Role of Mitochondria in Head and Neck Cancer. , 2013, , 949-975.                                                                                                                                                                                                                                              |     | Ο         |