Nagaraj Basavegowda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/855187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Industrial Crops and Products, 2014, 52, 745-751.	5.2	103
2	Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: A novel approach towards waste utilization. Materials Letters, 2013, 109, 31-33.	2.6	88
3	Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules, 2021, 11, 1267.	4.0	81
4	Green fabrication of ferromagnetic Fe ₃ O ₄ nanoparticles and their novel catalytic applications for the synthesis of biologically interesting benzoxazinone and benzthioxazinone derivatives. New Journal of Chemistry, 2014, 38, 5415-5420.	2.8	73
5	Trimetallic FeAgPt alloy as a nanocatalyst for the reduction of 4-nitroaniline and decolorization of rhodamine B: A comparative study. Journal of Alloys and Compounds, 2017, 701, 456-464.	5.5	70
6	Biosynthesis of Fe, Pd, and Fe–Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: a comparative approach. Catalysis Science and Technology, 2015, 5, 2612-2621.	4.1	68
7	Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities. Materials Science and Engineering C, 2014, 43, 58-64.	7.3	64
8	Sonochemically synthesized ferromagnetic Fe ₃ O ₄ nanoparticles as a recyclable catalyst for the preparation of pyrrolo[3,4-c]quinoline-1,3-dione derivatives. RSC Advances, 2014, 4, 61660-61666.	3.6	61
9	Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. Food and Bioprocess Technology, 2020, 13, 30-44.	4.7	61
10	Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules, 2021, 26, 912.	3.8	57
11	Synthesis, characterization, and catalytic applications of hematite (<i>α</i> -Fe ₂ O) Tj ETQq1 1 Nanotechnology, 2017, 8, 025017.	0.784314 r 1.5	gBT /Overloci 54
12	Plant Mediated Synthesis Of Gold Nanoparticles Using Fruit Extracts OfÂAnanas ComosusÂ(L.) (Pineapple) And Evaluation Of Biological Activities. Advanced Materials Letters, 2013, 4, 332-337.	0.6	51
13	Enhanced catalytic performance of magnetic Fe3O4–MnO2 nanocomposites for the decolorization of rhodamine B, reduction of 4-nitroaniline, and sp3 C–H functionalization of 2-methylpyridines to isatins. Journal of Catalysis, 2016, 344, 273-285.	6.2	47
14	Essential Oils and Mono/bi/tri-Metallic Nanocomposites as Alternative Sources of Antimicrobial Agents to Combat Multidrug-Resistant Pathogenic Microorganisms: An Overview. Molecules, 2020, 25, 1058.	3.8	46
15	Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech, 2021, 11, 357.	2.2	45
16	Ultrasonic-assisted green synthesis of palladium nanoparticles and their nanocatalytic application in multicomponent reaction. New Journal of Chemistry, 2015, 39, 972-977.	2.8	42
17	Sonochemical Green Synthesis of Yttrium Oxide (Y2O3) Nanoparticles as a Novel Heterogeneous Catalyst for the Construction of Biologically Interesting 1,3-Thiazolidin-4-ones. Catalysis Letters, 2017, 147, 2630-2639.	2.6	42
18	Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers, 2021, 13, 4198.	4.5	42

#	ARTICLE	IF	CITATIONS
19	Green synthesis and characterization of palladium nanoparticles and their catalytic performance for the efficient synthesis of biologically interesting di(indolyl)indolin-2-ones. Journal of Industrial and Engineering Chemistry, 2015, 21, 1365-1372.	5.8	36
20	Tyrosinase inhibitory activity of silver nanoparticles treated with Hovenia dulcis fruit extract: An in vitro study. Materials Letters, 2014, 129, 28-30.	2.6	32
21	<p>Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam</p> . International Journal of Nanomedicine, 2019, Volume 14, 4741-4754.	6.7	30
22	AuFeAg hybrid nanoparticles as an efficient recyclable catalyst for the synthesis of α,β- and β,β-dichloroenones. Applied Catalysis A: General, 2015, 506, 180-187.	4.3	28
23	Access to enhanced catalytic core–shell CuO–Pd nanoparticles for the organic transformations. RSC Advances, 2016, 6, 27974-27982.	3.6	20
24	One-step synthesis of highly-biocompatible spherical gold nanoparticles using Artocarpus heterophyllus Lam. (jackfruit) fruit extract and its effect on pathogens. Annals of Agricultural and Environmental Medicine, 2015, 22, 84-89.	1.0	19
25	Bioreduction of chloroaurate ions using fruit extract <i>Punica granatum</i> (Pomegranate) for synthesis of highly stable gold nanoparticles and assessment of its antibacterial activity. Micro and Nano Letters, 2013, 8, 400-404.	1.3	18
26	Fe ₃ O ₄ -decorated MWCNTs as an efficient and sustainable heterogeneous nanocatalyst for the synthesis of polyfunctionalised pyridines in water. Materials Technology, 2019, 34, 558-569.	3.0	12
27	Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of <i>Perilla Frutescens</i> —A Biogenic Approach. Journal of Nanoscience and Nanotechnology, 2014, 14, 4377-4382.	0.9	10
28	Efficient \$\$hbox {Cu(OTf)}_{2}\$\$ Cu(OTf) 2 -catalyzed synthesis of novel and diverse 2,3-dihydroquinazolin-4(1 \$\$H\$\$ H)-ones. Molecular Diversity, 2015, 19, 67-75.	3.9	9
29	Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels–Alder Reaction. Bulletin of the Korean Chemical Society, 2016, 37, 142-147.	1.9	9
30	Antioxidant and Anti-tyrosinase Activities of Palladium Nanoparticles Synthesized Using Saururus chinensis. Journal of Cluster Science, 2016, 27, 733-744.	3.3	9
31	Bimetallic p-ZnO/n-CuO nanocomposite synthesized using Aegle marmelos leaf extract exhibits excellent visible-light-driven photocatalytic removal of 4-nitroaniline and methyl orange.	2.9	8