Chao Qun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551780/publications.pdf

Version: 2024-02-01

54 papers

1,156 citations

471371 17 h-index 33 g-index

56 all docs 56
docs citations

56 times ranked 968 citing authors

#	Article	IF	Citations
1	Distinguish oral-source VOCs and control their potential impact on breath biomarkers. Analytical and Bioanalytical Chemistry, 2022, 414, 2275-2284.	1.9	8
2	Analysis of volatile organic compounds in exhaled breath after radiotherapy. Journal of Zhejiang University: Science B, 2022, 23, 153-157.	1.3	1
3	Evaluation of a New DC-lon Funnel Drift Tube for Use in Proton Transfer Reaction Mass Spectrometry. Analytical Chemistry, 2022, 94, 7174-7180.	3.2	6
4	Dopant for detection of methamphetamine in the presence of nicotine with ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 2021, 413, 4237-4246.	1.9	6
5	Development of a New Method for Turbidity Measurement Using Two NIR Digital Cameras. ACS Omega, 2020, 5, 5421-5428.	1.6	10
6	Variable VOCs in plastic culture flasks and their potential impact on cell volatile biomarkers. Analytical and Bioanalytical Chemistry, 2020, 412, 5397-5408.	1.9	11
7	Imaging VOC distribution in cities and tracing VOC emission sources with a novel mobile proton transfer reaction mass spectrometer. Environmental Pollution, 2020, 265, 114628.	3.7	28
8	Modification of an atmospheric pressure photoionization source for online analysis of exhaled breath coupled with quadrupole time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2020, 412, 3663-3671.	1.9	4
9	Laser Ablation Electrospray Ionization Time-of-Flight Mass Spectrometry for Direct Analysis of Biological Tissue. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-7.	0.7	3
10	Analysis of the false peaks in extended Hadamard transform ion mobility spectrometry. International Journal of Mass Spectrometry, 2019, 446, 116230.	0.7	4
11	On-line monitoring human breath acetone during exercise and diet by proton transfer reaction mass spectrometry. Bioanalysis, 2019, 11, 33-40.	0.6	9
12	Ammonia-Assisted Proton Transfer Reaction Mass Spectrometry for Detecting Triacetone Triperoxide (TATP) Explosive. Journal of the American Society for Mass Spectrometry, 2019, 30, 501-508.	1.2	16
13	Analysis of Nitrogen-containing Compounds in Mouth-exhaled Breath by Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Analytical Sciences, 2019, 35, 1155-1159.	0.8	2
14	Detection of Volatile Organic Compounds in a Drop of Urine by Ultrasonic Nebulization Extraction Proton Transfer Reaction Mass Spectrometry. Analytical Chemistry, 2018, 90, 2210-2215.	3.2	19
15	Normal-inverse bimodule operation Hadamard transform ion mobility spectrometry. Analytica Chimica Acta, 2018, 1029, 44-49.	2.6	11
16	Rapid and sensitive on-line monitoring 6 different kinds of volatile organic compounds in aqueous samples by spray inlet proton transfer reaction mass spectrometry (SI-PTR-MS). Chemosphere, 2017, 177, 217-223.	4.2	7
17	Glass bottle sampling solid phase microextraction gas chromatography mass spectrometry for breath analysis of drug metabolites. Journal of Chromatography A, 2017, 1496, 20-24.	1.8	11
18	Detection of Ketones by a Novel Technology: Dipolar Proton Transfer Reaction Mass Spectrometry (DP-PTR-MS). Journal of the American Society for Mass Spectrometry, 2017, 28, 873-879.	1.2	19

#	Article	IF	Citations
19	Simultaneous Improvement of Resolving Power and Signal-to-Noise Ratio Using a Modified Hadamard Transform-Inverse Ion Mobility Spectrometry Technique. Journal of the American Society for Mass Spectrometry, 2017, 28, 2500-2507.	1.2	8
20	Exhaled breath online measurement for cervical cancer patients and healthy subjects by proton transfer reaction mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 5603-5612.	1.9	21
21	Rapid analysis and identification of meat species by laserâ€ablation electrospray mass spectrometry (LAESIâ€MS). Rapid Communications in Mass Spectrometry, 2016, 30, 116-121.	0.7	22
22	An experimental study of low energy electrons attachment to CH2ClBr using ion mobility spectrometry. International Journal of Mass Spectrometry, 2016, 402, 29-35.	0.7	6
23	A novel driving mode for ion shutter based on alternating current superposition and its application to ion mobility spectrometry. Sensors and Actuators B: Chemical, 2015, 211, 102-110.	4.0	8
24	Dissociative photoionization of ethyl acrylate: Theoretical and experimental insights. Journal of Molecular Structure, 2015, 1094, 83-90.	1.8	3
25	Rapid identification of false peaks in the spectrum of Hadamard transform ion mobility spectrometry with inverse gating technique. RSC Advances, 2015, 5, 56103-56109.	1.7	14
26	Rate constants of electron attachment to alkyl iodides measured by photoionization electron attachment ion mobility spectrometry (PI-EA-IMS). International Journal of Mass Spectrometry, 2015, 376, 1-5.	0.7	5
27	Negative photoionization chloride ion attachment ion mobility spectrometry for the detection of organic acids. RSC Advances, 2014, 4, 63977-63984.	1.7	7
28	Proton-extraction-reaction mass spectrometry (PER-MS) for monitoring organic and inorganic compounds. International Journal of Mass Spectrometry, 2014, 371, 36-41.	0.7	5
29	Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS). Radiation Physics and Chemistry, 2012, 81, 1869-1873.	1.4	7
30	Dissociative photoionization of perfluorocyclobutane and <i>cis</i> -1,1,2,2,3,4-hexafluorocyclobutane. Journal of Physics: Conference Series, 2011, 288, 012021.	0.3	2
31	Positive corona discharge ion source with IMS/MS to detect impurities in high purity Nitrogen. EPJ Applied Physics, 2011, 55, 13808.	0.3	16
32	Rate constants of electron attachment to chlorobenzenes measured by atmospheric pressure nitrogen corona discharge electron attachment ion mobility spectrometry. International Journal of Mass Spectrometry, 2011, 305, 30-34.	0.7	11
33	Velocity map imaging apparatus applicable to a study of multiple photofragmentation of C60. Chemical Physics Letters, 2009, 469, 19-25.	1.2	5
34	Photoabsorption cross section of C60 thin films from the visible to vacuum ultraviolet. Carbon, 2009, 47, 1152-1157.	5.4	22
35	Absolute Total Photoionization Cross Section of C ₆₀ in the Range of 25–120 eV: Revisited. Journal of the Physical Society of Japan, 2008, 77, 014302.	0.7	34
36	Study on combustion of gasoline/MTBE in laminar flame with synchrotron radiation. Chemosphere, 2007, 67, 2065-2071.	4.2	11

#	Article	IF	CITATIONS
37	Thermal Decomposition of Glycidyl Azide Polymer Studied by Synchrotron Photoionization Mass Spectrometry. Journal of Physical Chemistry B, 2007, 111, 2449-2455.	1.2	36
38	An Experimental Study of Rich Premixed Gasoline/O2/Ar Flame with Tunable Synchrotron Vacuum Ultraviolet Photoionization. Energy & Energy & 1931-1941.	2.5	25
39	Relative Partial Cross Sections for Single, Double, and Triple Photoionization of C ₆₀ and C ₇₀ . Journal of Physical Chemistry A, 2007, 111, 8336-8343.	1.1	12
40	VUV dissociative photoionization of CHF2Cl. Journal of Molecular Structure, 2007, 826, 192-197.	1.8	11
41	An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proceedings of the Combustion Institute, 2007, 31, 555-563.	2.4	131
42	Identifying combustion intermediates in premixed MTBE/gasoline/oxygen flame probed via synchrotron radiation. Frontiers of Energy and Power Engineering in China, 2007, 1, 79-84.	0.4	0
43	Identification and Chemistry of C4H3and C4H5Isomers in Fuel-Rich Flames. Journal of Physical Chemistry A, 2006, 110, 3670-3678.	1.1	143
44	UV Photoionization Study of the Ethyl Radical 1. Chemical Research in Chinese Universities, 2006, 22, 375-378.	1.3	7
45	Lean Premixed Gasoline/Oxygen Flame Studied with Tunable Synchrotron Vacuum UV Photoionization. Energy & Energy	2.5	38
46	Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Ethylenediamine. Journal of Physical Chemistry A, 2006, 110, 9089-9098.	1.1	7
47	Identification of isomeric C5H3 and C5H5 free radicals in flame with tunable synchrotron photoionization. Chemical Physics Letters, 2006, 423, 321-326.	1.2	50
48	Direct identification of propargyl radical in combustion flames by vacuum ultraviolet photoionization mass spectrometry. Journal of Chemical Physics, 2006, 124, 074302.	1.2	36
49	VUV Photoionization Study of the Allyl Radical from Premixed Gasoline/Oxygen Flame. Chinese Journal of Chemical Physics, 2006, 19, 25-28.	0.6	1
50	Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Review of Scientific Instruments, 2006, 77, 084101.	0.6	171
51	The study of photoionization and fragmentation of CHF2Cl: experiment and quantum chemical calculation. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 191-194.	0.8	1
52	Combustion study with synchrotron radiation single-photon ionization technique. Science Bulletin, 2005, 50, 1082.	1.7	2
53	Modification of photoionization mass spectrometer with synchrotron radiation as ionization source. Review of Scientific Instruments, 2005, 76, 126108.	0.6	46
54	A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Acetone. Journal of Physical Chemistry A, 2005, 109, 4231-4241.	1.1	33