Raymond F Hamilton Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551673/publications.pdf

Version: 2024-02-01

34 papers 1,857 citations

361413 20 h-index 377865 34 g-index

34 all docs

34 docs citations

times ranked

34

2739 citing authors

#	Article	IF	CITATIONS
1	Silica binding and toxicity in alveolar macrophages. Free Radical Biology and Medicine, 2008, 44, 1246-1258.	2.9	329
2	Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Particle and Fibre Toxicology, 2009, 6, 35.	6.2	299
3	MARCO Mediates Silica Uptake and Toxicity in Alveolar Macrophages from C57BL/6 Mice. Journal of Biological Chemistry, 2006, 281, 34218-34226.	3.4	157
4	Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Particle and Fibre Toxicology, 2013, 10, 57.	6.2	135
5	NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhalation Toxicology, 2012, 24, 995-1008.	1.6	96
6	Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology, 2014, 8, 317-327.	3.0	90
7	The Effect of Size on Ag Nanosphere Toxicity in Macrophage Cell Models and Lung Epithelial Cell Lines Is Dependent on Particle Dissolution. International Journal of Molecular Sciences, 2014, 15, 6815-6830.	4.1	71
8	Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicology and Applied Pharmacology, 2017, 318, 58-68.	2.8	70
9	Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhalation Toxicology, 2013, 25, 199-210.	1.6	65
10	Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicology and Applied Pharmacology, 2016, 309, 101-110.	2.8	61
11	Three human cell types respond to multi-walled carbon nanotubes and titanium dioxide nanobelts with cell-specific transcriptomic and proteomic expression patterns. Nanotoxicology, 2014, 8, 533-548.	3.0	59
12	Role of Scavenger Receptor A Family in Lung Inflammation from Exposure to Environmental Particles. Journal of Immunotoxicology, 2008, 5, 151-157.	1.7	57
13	Toxicity of Lunar and Martian Dust Simulants to Alveolar Macrophages Isolated from Human Volunteers. Inhalation Toxicology, 2008, 20, 157-165.	1.6	38
14	Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts. Particle and Fibre Toxicology, 2014, 11, 43.	6.2	38
15	A COMPARISON OF ASBESTOS AND URBAN PARTICULATE MATTER IN THE IN VITRO MODIFICATION OF HUMAN ALVEOLAR MACROPHAGE ANTIGEN-PRESENTING CELL FUNCTION. Experimental Lung Research, 2004, 30, 147-162.	1.2	34
16	Role of Lysosomes in Silica-Induced Inflammasome Activation and Inflammation in Absence of MARCO. Journal of Immunology Research, 2014, 2014, 1-10.	2.2	34
17	The Association of LINE-1 Hypomethylation with Age and Centromere Positive Micronuclei in Human Lymphocytes. PLoS ONE, 2015, 10, e0133909.	2.5	28
18	Engineered carbon nanoparticles alter macrophage immune function and initiate airway hyper-responsiveness in the BALB/c mouse model. Nanotoxicology, 2007, 1, 104-117.	3.0	23

#	Article	IF	CITATIONS
19	Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2017, 20, 230-248.	6.5	21
20	Effect of Carbon Nanotube-Metal Hybrid Particle Exposure to Freshwater Algae Chlamydomonas reinhardtii. Scientific Reports, 2018, 8, 15301.	3.3	21
21	The Effects of Varying Degree of MWCNT Carboxylation on Bioactivity in Various In Vivo and In Vitro Exposure Models. International Journal of Molecular Sciences, 2018, 19, 354.	4.1	20
22	Alveolar macrophages from systemic sclerosis patients: evidence for IL-4-mediated phenotype changes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L1202-L1209.	2.9	17
23	Length, but Not Reactive Edges, of Cup-stack MWCNT Is Responsible for Toxicity and Acute Lung Inflammation. Toxicologic Pathology, 2018, 46, 62-74.	1.8	17
24	Approaching a Unified Theory for Particle-Induced Inflammation. Current Topics in Environmental Health and Preventive Medicine, 2016, , 51-76.	0.1	11
25	Multiwalled Carbon Nanotubes of Varying Size Lead to DNA Methylation Changes That Correspond to Lung Inflammation and Injury in a Mouse Model. Chemical Research in Toxicology, 2019, 32, 1545-1553.	3.3	11
26	The Missoula Valley Semivolatile and Volatile Organic Compound Study: Seasonal Average Concentrations. Journal of the Air and Waste Management Association, 2005, 55, 1007-1013.	1.9	10
27	Respiratory and systemic impacts following MWCNT inhalation in B6C3F1/N mice. Particle and Fibre Toxicology, 2021, 18, 16.	6.2	10
28	Modification of nano-silver bioactivity by adsorption on carbon nanotubes and graphene oxide. Inhalation Toxicology, 2018, 30, 429-438.	1.6	7
29	Lung deposition patterns of MWCNT vary with degree of carboxylation. Nanotoxicology, 2019, 13, 143-159.	3.0	7
30	Docosahexaenoic acid impacts macrophage phenotype subsets and phagolysosomal membrane permeability with particle exposure. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 152-172.	2.3	7
31	Mouse pulmonary dose- and time course-responses induced by exposure to nitrogen-doped multi-walled carbon nanotubes. Inhalation Toxicology, 2020, 32, 24-38.	1.6	6
32	Hyperspectral microscopy of subcutaneously released silver nanoparticles reveals sex differences in drug distribution. Micron, 2022, 153, 103193.	2.2	4
33	Therapeutic treatment of dietary docosahexaenoic acid for particle-induced pulmonary inflammation in Balb/c mice. Inflammation Research, 2021, 70, 359-373.	4.0	3
34	Dietary Docosahexaenoic Acid as a Potential Treatment for Semi-acute and Chronic Particle-Induced Pulmonary Inflammation in Balb/c Mice. Inflammation, 2022, 45, 677-694.	3.8	1