Pascal Kerschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8551559/publications.pdf Version: 2024-02-01

DASCAL KEDSCHKE

#	Article	IF	CITATIONS
1	Automated Algorithm Selection: Survey and Perspectives. Evolutionary Computation, 2019, 27, 3-45.	2.3	219
2	ASlib: A benchmark library for algorithm selection. Artificial Intelligence, 2016, 237, 41-58.	3.9	121
3	Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning. Evolutionary Computation, 2019, 27, 99-127.	2.3	102
4	Detecting Funnel Structures by Means of Exploratory Landscape Analysis. , 2015, , .		59
5	Leveraging TSP Solver Complementarity through Machine Learning. Evolutionary Computation, 2018, 26, 597-620.	2.3	53
6	Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco. Studies in Classification, Data Analysis, and Knowledge Organization, 2019, , 93-123.	0.1	52
7	Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models. , 2016, , .		41
8	The R-Package FLACCO for exploratory landscape analysis with applications to multi-objective optimization problems. , 2016, , .		40
9	Improving the State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection. Lecture Notes in Computer Science, 2015, , 202-217.	1.0	36
10	An Expedition to Multimodal Multi-objective Optimization Landscapes. Lecture Notes in Computer Science, 2017, , 329-343.	1.0	30
11	Towards Analyzing Multimodality of Continuous Multiobjective Landscapes. Lecture Notes in Computer Science, 2016, , 962-972.	1.0	25
12	Modelling interventions in INGARCH processes. International Journal of Computer Mathematics, 2016, 93, 640-657.	1.0	21
13	Cell Mapping Techniques for Exploratory Landscape Analysis. Advances in Intelligent Systems and Computing, 2014, , 115-131.	0.5	21
14	Evolving diverse TSP instances by means of novel and creative mutation operators. , 2019, , .		20
15	Search Dynamics on Multimodal Multiobjective Problems. Evolutionary Computation, 2019, 27, 577-609.	2.3	18
16	Multimodality in Multi-objective Optimization – More Boon than Bane?. Lecture Notes in Computer Science, 2019, , 126-138.	1.0	17
17	OpenML: An R package to connect to the machine learning platform OpenML. Computational Statistics, 2019, 34, 977-991.	0.8	16
18	Peeking beyond peaks: Challenges and research potentials of continuous multimodal multi-objective optimization. Computers and Operations Research, 2021, 136, 105489.	2.4	16

PASCAL KERSCHKE

#	Article	IF	CITATIONS
19	Single- and multi-objective game-benchmark for evolutionary algorithms. , 2019, , .		12
20	One PLOT to Show Them All: Visualization of Efficient Sets in Multi-objective Landscapes. Lecture Notes in Computer Science, 2020, , 154-167.	1.0	12
21	Initial design strategies and their effects on sequential model-based optimization. , 2020, , .		12
22	Parameterization of state-of-the-art performance indicators. , 2018, , .		11
23	To Boldly Show What No One Has Seen Before: A Dashboard for Visualizing Multi-objective Landscapes. Lecture Notes in Computer Science, 2021, , 632-644.	1.0	10
24	Deep Learning as a Competitive Feature-Free Approach for Automated Algorithm Selection on the Traveling Salesperson Problem. Lecture Notes in Computer Science, 2020, , 48-64.	1.0	10
25	flaccogui. , 2017, , .		9
26	Sliding to the global optimum: How to benefit from non-global optima in multimodal multi-objective optimization. AIP Conference Proceedings, 2019, , .	0.3	9
27	Per-Instance Configuration of the Modularized CMA-ES by Means of Classifier Chains and Exploratory Landscape Analysis. , 2020, , .		9
28	Making a case for (Hyper-)parameter tuning as benchmark problems. , 2019, , .		8
29	A multi-objective perspective on performance assessment and automated selection of single-objective optimization algorithms. Applied Soft Computing Journal, 2020, 88, 105901.	4.1	7
30	Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent. , 2020, , .		6
31	Evolving Sampling Strategies for One-Shot Optimization Tasks. Lecture Notes in Computer Science, 2020, , 111-124.	1.0	6
32	Exploratory landscape analysis. , 2019, , .		5
33	Exploring the MLDA benchmark on the nevergrad platform. , 2019, , .		5
34	MOLE., 2022, , .		5
35	Multi\$\$^3\$\$: Optimizing Multimodal Single-Objective Continuous Problems in the Multi-objective Space by Means of Multiobjectivization. Lecture Notes in Computer Science, 2021, , 311-322.	1.0	4

The node weight dependent traveling salesperson problem. , 2020, , .

4

#	Article	IF	CITATIONS
37	Exploratory landscape analysis. , 2017, , .		3
38	Towards Feature-Free Automated Algorithm Selection for Single-Objective Continuous Black-Box Optimization. , 2021, , .		3
39	Anytime Behavior of Inexact TSP Solvers and Perspectives for Automated Algorithm Selection. , 2020, , .		2
40	On the potential of normalized TSP features for automated algorithm selection. , 2021, , .		2
41	Lifting the Multimodality-Fog in Continuous Multi-objective Optimization. Natural Computing Series, 2021, , 89-111.	2.2	2
42	Enhancing Resilience of Deep Learning Networks By Means of Transferable Adversaries. , 2020, , .		0