Chao Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550969/publications.pdf

Version: 2024-02-01

236833 2,324 74 25 h-index citations papers

g-index 74 74 74 2933 docs citations times ranked citing authors all docs

289141

40

#	Article	IF	CITATIONS
1	GaN-Based Micro-Light-Emitting Diode Driven by a Monolithic Integrated Ultraviolet Phototransistor. IEEE Electron Device Letters, 2022, 43, 80-83.	2.2	13
2	46.4 Gbps visible light communication system utilizing a compact tricolor laser transmitter. Optics Express, 2022, 30, 4365.	1.7	18
3	High-Speed GaN-Based Superluminescent Diode for 4.57 Gbps Visible Light Communication. Crystals, 2022, 12, 191.	1.0	10
4	Neural Network Detection for Bandwidth-Limited Non-Orthogonal Multiband CAP UVLC System. IEEE Photonics Journal, 2022, 14, 1-9.	1.0	5
5	205-Gbit/s Visible Light Communication Utilizing 4×4 Si-substrate \hat{l} /4LED-based Photodetector Array. , 2022, , .		1
6	DC-Balanced Even-Dimensional CAP Modulation for Visible Light Communication. Journal of Lightwave Technology, 2022, 40, 5041-5051.	2.7	3
7	High-speed visible light communication system based on superluminescent diodes (SLDs). , 2021, , .		O
8	A 15 Gbps 520-nm GaN Laser Diode Based Visible Light Communication System Utilizing Adaptive Bit Loading Scheme., 2021,,.		1
9	Adaptive Diversity Combining Technology with Deep Neural Network for High-Speed and Reliable Underwater Visible Light Communication System. , 2021, , .		2
10	Non-line-of-sight methodology for high-speed wireless optical communication in highly turbid water. Optics Communications, 2020, 461, 125264.	1.0	34
11	Laser-based high bit-rate visible light communications and underwater optical wireless network. , 2020, , .		3
12	Blue Laser Diode System With an Enhanced Wavelength Tuning Range. IEEE Photonics Journal, 2020, 12, 1-10.	1.0	6
13	Blue Superluminescent Diode on c-Plane GaN Beyond Gigahertz Modulation Bandwidth for Visible Light Communication. , 2019, , .		O
14	Group-III-Nitride Superluminescent Diodes for Solid-State Lighting and High-Speed Visible Light Communications. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-10.	1.9	44
15	Laser-based visible light communications and underwater wireless optical communications: a device perspective. , 2019 , , .		16
16	On the realization of across wavy water-air-interface diffuse-line-of-sight communication based on an ultraviolet emitter. Optics Express, 2019, 27, 19635.	1.7	42
17	Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Optics Express, 2019, 27, 30450.	1.7	52
18	Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells. Optics Express, 2019, 27, 34542.	1.7	27

#	Article	IF	Citations
19	Blue Superluminescent Diodes with GHz Bandwidth Exciting Perovskite Nanocrystals for High CRI White Lighting and High-Speed VLC. , 2019, , .		1
20	Study on laser-based white light sources. , 2019, , .		2
21	Visible light communication using DC-biased optical filter bank multi-carrier modulation. , 2018, , .		17
22	Worst-case residual clipping noise power model for bit loading in LACO-OFDM., 2018, , .		7
23	High Power GaN-Based Blue Superluminescent Diode Exceeding 450 mW., 2018, , .		1
24	Investigation of Self-Injection Locked Visible Laser Diodes for High Bit-Rate Visible Light Communication. IEEE Photonics Journal, 2018, 10, 1-11.	1.0	25
25	375-nm ultraviolet-laser based non-line-of-sight underwater optical communication. Optics Express, 2018, 26, 12870.	1.7	50
26	32 Gigabit-per-second Visible Light Communication Link with InGaN/GaN MQW Micro-photodetector. Optics Express, 2018, 26, 3037.	1.7	56
27	Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications. Optics Express, 2018, 26, A219.	1.7	23
28	Light based underwater wireless communications. Japanese Journal of Applied Physics, 2018, 57, 08PA06.	0.8	89
29	Semipolar GaN-based laser diodes for Gbit/s white lighting communication: devices to systems. , 2018, , .		9
30	High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. Optics Express, 2018, 26, 26355.	1.7	44
31	High Performance self-injection locked 524 nm green laser diode for high bitrate visible light communications. , 2018, , .		0
32	Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes. , 2017 , , .		3
33	Semipolar InGaN-based superluminescent diodes for solid-state lighting and visible light communications. Proceedings of SPIE, 2017, , .	0.8	6
34	Semipolar III–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system. Applied Physics Express, 2017, 10, 042201.	1.1	30
35	Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. Nano Letters, 2017, 17, 4759-4767.	4.5	251
36	Underwater wireless optical communications: From system-level demonstrations to channel modelling., 2017,,.		6

#	Article	IF	Citations
37	Integrated photonic platform based on semipolar InGaN/GaN multiple section laser diodes. , 2017, , .		2
38	Going beyond 10-meter, Gbit/s underwater optical wireless communication links based on visible lasers. , 2017, , .		13
39	Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors. Optics Express, 2017, 25, 17480.	1.7	75
40	71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation. Optics Express, 2017, 25, 23267.	1.7	54
41	Visible Lasers and Emerging Color Converters for Lighting and Visible Light Communications. , 2017, , .		3
42	High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth. Optics Express, 2016, 24, 20281.	1.7	50
43	20-meter underwater wireless optical communication link with 15 Gbps data rate. Optics Express, 2016, 24, 25502.	1.7	234
44	On the optical and microstrain analysis of graded InGaN/GaN MQWs based on plasma assisted molecular beam epitaxy. Optical Materials Express, 2016, 6, 2052.	1.6	13
45	Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics. Nano Letters, 2016, 16, 4616-4623.	4.5	101
46	Carbon nanotube-graphene composite film as transparent conductive electrode for GaN-based light-emitting diodes. Applied Physics Letters, 2016, 109, .	1.5	20
47	High gain semiconductor optical amplifier — Laser diode at visible wavelength. , 2016, , .		4
48	High-brightness semipolar ($2021\hat{A}^-$) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. Optics Letters, 2016, 41, 2608.	1.7	54
49	Red to green emitters from InGaP/InAlGaP laser structure by strain-induced quantum-well intermixing. , 2016, , .		1
50	Ultrabroad linewidth orange-emitting nanowires LED for high CRI laser-based white lighting and gigahertz communications. Optics Express, 2016, 24, 19228.	1.7	20
51	Observation of Ultrafast Exciton–Exciton Annihilation in CsPbBr ₃ Quantum Dots. Advanced Optical Materials, 2016, 4, 1993-1997.	3.6	64
52	True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light. ACS Photonics, 2016, 3, 2089-2095.	3.2	25
53	GHz modulation enabled using large extinction ratio waveguide-modulator integrated with 404 nm GaN laser diode. , 2016 , , .		2
54	Raman and Photoluminescence Spectroscopy of Laser Irradiated Sites of Fused Silica: Comparison between Bulk and Surface Damage. , 2016, , .		2

#	Article	IF	Citations
55	Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale, 2016, 8, 12294-12306.	2.8	127
56	Perovskite Nanocrystals as a Color Converter for Visible Light Communication. ACS Photonics, 2016, 3, 1150-1156.	3.2	221
57	High-Modulation-Efficiency, Integrated Waveguide Modulator–Laser Diode at 448 nm. ACS Photonics, 2016, 3, 262-268.	3.2	73
58	Facile Formation of High-Quality InGaN/GaN Quantum-Disks-in-Nanowires on Bulk-Metal Substrates for High-Power Light-Emitters. Nano Letters, 2016, 16, 1056-1063.	4.5	84
59	GHz modulation bandwidth from single-longitudinal mode violet-blue VCSEL using nonpolar InGaN/GaN QWs. , 2016, , .		7
60	Direct Growth of High-Power InGaN/GaN Quantum-Disks-in-Nanowires Red Light-Emitting Diodes on Polycrystalline Molybdenum Substrates. , 2016, , .		0
61	High-performance InGaN/GaN Quantum-Disks-in-Nanowires Light-emitters for Monolithic Metal-Optoelectronics. , 2016, , .		0
62	2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. Optics Express, 2015, 23, 29779.	1.7	103
63	Achieving Uniform Carrier Distribution in MBE-Grown Compositionally Graded InGaN Multiple-Quantum-Well LEDs. IEEE Photonics Journal, 2015, 7, 1-9.	1.0	22
64	Low modulation bias InGaN-based integrated EA-modulator-laser on semipolar GaN substrate., 2015,,.		1
65	Intermixing effects on emission properties of InGaN/GaN coupled Quantum wells. , 2015, , .		O
66	Enabling area-selective potential-energy engineering in InGaN/GaN quantum wells by post-growth intermixing. Optics Express, 2015, 23, 7991.	1.7	15
67	Optical Gain and Absorption of 420 nm InGaN-based Laser Diodes Grown on m-Plane GaN Substrate. , 2014, , .		0
68	Red to Near-Infrared Emission from InGaN/GaN Quantum-Disks-in-Nanowires LED., 2014, , .		2
69	Extending quantum efficiency roll-over threshold with compositionally graded InGaN/GaN LED. , 2014, , .		O
70	Strain relief InGaN/GaN MQW micro-pillars for high brightness LEDs. , 2013, , .		1
71	InGaN micro-LED-pillar as the building block for high brightness emitters. , 2013, , .		6
72	Long-term RF Burn-in Effects on Dielectric Charging of MEMS Capacitive Switches. IEEE Transactions on Device and Materials Reliability, 2013, 13, 310-315.	1.5	3

#	Article	IF	CITATIONS
73	Surface States Effect on the Large Photoluminescence Redshift in GaN Nanostructures. , 2013, , .		1
74	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268.	3.1	24