Krzysztof Kochanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550820/publications.pdf

Version: 2024-02-01

		1163117	1058476	
17	201	8	14	
papers	citations	h-index	g-index	
17	17	17	194	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Novel neuro-audiological findings and further evidence for TWNK involvement in Perrault syndrome. Journal of Translational Medicine, 2017, 15, 25.	4.4	36
2	Synchronized spontaneous otoacoustic emissions analyzed in a time-frequency domain. Journal of the Acoustical Society of America, 2008, 124, 3720-3729.	1.1	32
3	Tone-Burst and Click-Evoked Otoacoustic Emissions in Subjects With Hearing Loss Above 0.25, 0.5, and 1 kHz. Ear and Hearing, 2012, 33, 757-767.	2.1	19
4	Time–frequency analysis of linear and nonlinear otoacoustic emissions and removal of a short-latency stimulus artifact. Journal of the Acoustical Society of America, 2012, 131, 2200-2208.	1.1	18
5	Use of the matching pursuit algorithm with a dictionary of asymmetric waveforms in the analysis of transient evoked otoacoustic emissions. Journal of the Acoustical Society of America, 2009, 126, 3137-3146.	1.1	17
6	Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hearing Research, 2017, 355, 81-96.	2.0	16
7	Otoacoustic emissions evoked by 0.5 kHz tone bursts. Journal of the Acoustical Society of America, 2009, 125, 3158.	1.1	15
8	Otoacoustic emissions in neonates measured with different acquisition protocols. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 382-387.	1.0	9
9	Does the Presence of Spontaneous Components Affect the Reliability of Contralateral Suppression of Evoked Otoacoustic Emissions?. Ear and Hearing, 2021, 42, 990-1005.	2.1	8
10	Low-frequency otoacoustic emissions in schoolchildren measured by two commercial devices. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 1724-1728.	1.0	7
11	Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks. PLoS ONE, 2018, 13, e0192930.	2.5	6
12	Otoacoustic emissions in newborns evoked by 0.5kHz tone bursts. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 1522-1526.	1.0	5
13	TBC1D24 emerges as an important contributor to progressive postlingual dominant hearing loss. Scientific Reports, 2021, 11, 10300.	3.3	4
14	Spontaneous otoacoustic emissions in schoolchildren. International Journal of Pediatric Otorhinolaryngology, 2016, 89, 67-71.	1.0	3
15	Comparison of tympanometry results for probe tones of 226ÂHz and 1000ÂHz in newborns. International Journal of Pediatric Otorhinolaryngology, 2021, 147, 110804.	1.0	3
16	The Reliability of Contralateral Suppression of Otoacoustic Emissions Is Greater in Women than in Men. Audiology Research, 2022, 12, 79-86.	1.8	3
17	Frequency-specificity of auditory brainstem responses elicited by 500 Hz tone-pip with Gaussian envelope in normal hearing and sensorineural hearing loss. International Congress Series, 2003, 1240, 257-261.	0.2	O