Jun-Bo He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures. Nano Research, 2022, 15, 2674-2681.	5.8	20
2	Novel polyglycerol-10 dialdehyde mediated cross-linking of sodium caseinate: Preparation, characterization, and improved emulsifying properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128957.	2.3	5
3	Encapsulation of resveratrol in zein-polyglycerol conjugate stabilized O/W nanoemulsions: Chemical stability, in vitro gastrointestinal digestion, and antioxidant activity. LWT - Food Science and Technology, 2021, 149, 112049.	2.5	16
4	Insight into the halogen bonding between PA-1 ligand and pyruvate dehydrogenase complex E1 component by crystal structure, DFT calculation, and molecular docking. Journal of Molecular Structure, 2020, 1199, 126991.	1.8	5
5	Zein-Polyglycerol Conjugates with Enhanced Water Solubility and Stabilization of High Oil Loading Emulsion. Journal of Agricultural and Food Chemistry, 2020, 68, 11810-11816.	2.4	21
6	Optical properties of thickness-controlled PtSe ₂ thin films studied <i>via</i> spectroscopic ellipsometry. Physical Chemistry Chemical Physics, 2020, 22, 26383-26389.	1.3	19
7	Improved Physicochemical Properties of Curcumin-Loaded Solid Lipid Nanoparticles Stabilized by Sodium Caseinate-Lactose Maillard Conjugate. Journal of Agricultural and Food Chemistry, 2020, 68, 7072-7081.	2.4	41
8	Carvacrol Loaded Solid Lipid Nanoparticles of Propylene Glycol Monopalmitate and Glyceryl Monostearate: Preparation, Characterization, and Synergistic Antimicrobial Activity. Nanomaterials, 2019, 9, 1162.	1.9	44
9	1-Laurin-3-Palmitin as a Novel Matrix of Solid Lipid Particles: Higher Loading Capacity of Thymol and Better Stability of Dispersions Than Those of Glyceryl Monostearate and Glyceryl Tripalmitate. Nanomaterials, 2019, 9, 489.	1.9	15
10	Core-Shell Nanoencapsulation of α-Tocopherol by Blending Sodium Oleate and Rebaudioside A: Preparation, Characterization, and Antioxidant Activity. Molecules, 2018, 23, 3183.	1.7	16
11	Synthesis, Characterization, and Performance Evaluation of Sulfur-Containing Diphenylamines Based on Intramolecular Synergism. Molecules, 2018, 23, 401.	1.7	9
12	Establishing quantitative structure tribo-ability relationship model using Bayesian regularization neural network. Friction, 2016, 4, 105-115.	3.4	22
13	Synthesis and Biological Activity of Ethyl 4â€Alkylâ€2â€{2â€{substituted) Tj ETQq1 1 0.784314 rgBT /Overlock 1	10 Tf 50 20 1.4	62 _{.2} Td (phen
14	Design, synthesis, biological evaluation and molecular docking of amide and sulfamide derivatives as Escherichia coli pyruvate dehydrogenase complex E1 inhibitors. RSC Advances, 2016, 6, 4310-4320.	1.7	12
15	Synthesis and antifungal activity of 5-iodo-1,4-disubstituted-1,2,3-triazole derivatives as pyruvate dehydrogenase complex E1 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 1395-1401.	1.4	30
16	3D-Qsar on 1-Substituted Phenoxyacetoxyalkylphosphonates and Phosphinates Using CoMFA and CoMSIA. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 85-92.	0.8	0
17	The design, synthesis and biological evaluation of novel thiamin diphosphate analog inhibitors against the pyruvate dehydrogenase multienzyme complex E1 from Escherichia coli. Organic and Biomolecular Chemistry, 2014, 12, 8911-8918.	1.5	11
18	Design, synthesis and molecular docking of amide and urea derivatives as Escherichia coli PDHc-E1 inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 3180-3186.	1.4	13

Jun-Bo He

#	Article	IF	CITATIONS
19	Design, synthesis and molecular modeling of novel N-acylhydrazone derivatives as pyruvate dehydrogenase complex E1 inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 89-94.	1.4	28
20	α-(Substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonates: Synthesis, Herbicidal Activity, Inhibition on Pyruvate Dehydrogenase Complex (PDHc), and Application as Postemergent Herbicide against Broadleaf Weeds. Journal of Agricultural and Food Chemistry, 2013, 61, 2479-2488.	2.4	27
21	¹ H and ¹³ C NMR assignments of four series bioactive pyrido[4,3â€d]pyrimidine derivatives. Magnetic Resonance in Chemistry, 2012, 50, 646-650.	1.1	2
22	Synthesis and antitumor activity of novel quinazoline derivatives containing thiosemicarbazide moiety. European Journal of Medicinal Chemistry, 2012, 54, 925-930.	2.6	55
23	Design, synthesis and biological evaluation of novel 2-methylpyrimidine-4-ylamine derivatives as inhibitors of Escherichia coli pyruvate dehydrogenase complex E1. Bioorganic and Medicinal Chemistry, 2012, 20, 1665-1670.	1.4	39
24	Studies ofO,O-Dimethyl α-(2,4-Dichlorophenoxyacetoxy)ethylphosphonate (HW02) as a New Herbicide. 1. Synthesis and Herbicidal Activity of HW02 and Analogues as Novel Inhibitors of Pyruvate Dehydrogenase Complex. Journal of Agricultural and Food Chemistry, 2011, 59, 4801-4813.	2.4	58
25	Structure-based rational design of novel hit compounds for pyruvate dehydrogenase multienzyme complex E1 components from Escherichia coli. Bioorganic and Medicinal Chemistry, 2011, 19, 7501-7506.	1.4	23