
Chang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550248/publications.pdf Version: 2024-02-01

Сналсти

#	Article	IF	CITATIONS
1	Altered H3K27 trimethylation contributes to flowering time variations in polyploid <i>Arabidopsis thaliana</i> ecotypes. Journal of Experimental Botany, 2022, 73, 1402-1414.	2.4	0
2	Rice <i>RS2â€9</i> , which is bound by transcription factor OSH1, blocks enhancer–promoter interactions in plants. Plant Journal, 2022, 109, 541-554.	2.8	6
3	DYT6 mutated THAP1 is a cell type dependent regulator of the SP1 family. Brain, 2022, 145, 3968-3984.	3.7	4
4	Spatial Features and Functional Implications of Plant 3D Genome Organization. Annual Review of Plant Biology, 2022, 73, 173-200.	8.6	13
5	CHROMOMETHYLTRANSFERASE3/KRYPTONITE maintains the <i>sulfurea</i> paramutation in <i>Solanum lycopersicum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112240119.	3.3	4
6	Organization and epigenomic control of RNA polymerase III-transcribed genes in plants. Current Opinion in Plant Biology, 2022, 67, 102199.	3.5	3
7	Characterization of a Plant Nuclear Matrix Constituent Protein in Liverwort. Frontiers in Plant Science, 2021, 12, 670306.	1.7	12
8	Gradual evolution of allopolyploidy in Arabidopsis suecica. Nature Ecology and Evolution, 2021, 5, 1367-1381.	3.4	64
9	Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors. Journal of Experimental Botany, 2021, 72, 7927-7941.	2.4	14
10	Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Current Biology, 2021, 31, 5522-5532.e7.	1.8	36
11	Chromatin domains in space and their functional implications. Current Opinion in Plant Biology, 2020, 54, 1-10.	3.5	26
12	Improved Reference Genome Uncovers Novel Sex-Linked Regions in the Guppy (Poecilia reticulata). Genome Biology and Evolution, 2020, 12, 1789-1805.	1.1	36
13	Marchantia TCP transcription factor activity correlates with three-dimensional chromatin structure. Nature Plants, 2020, 6, 1250-1261.	4.7	46
14	Isolation of Lineage Specific Nuclei Based on Distinct Endoreduplication Levels and Tissue-Specific Markers to Study Chromatin Accessibility Landscapes. Plants, 2020, 9, 1478.	1.6	4
15	Tidying-up the plant nuclear space: domains, functions, and dynamics. Journal of Experimental Botany, 2020, 71, 5160-5178.	2.4	20
16	R-Loop Mediated trans Action of the APOLO Long Noncoding RNA. Molecular Cell, 2020, 77, 1055-1065.e4.	4.5	164
17	Chromatin Organization in Early Land Plants Reveals an Ancestral Association between H3K27me3, Transposons, and Constitutive Heterochromatin. Current Biology, 2020, 30, 573-588.e7.	1.8	160
18	Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biology, 2020, 21, 104.	3.8	99

Chang Liu

#	Article	IF	CITATIONS
19	Gamete binning: chromosome-level and haplotype-resolved genome assembly enabled by high-throughput single-cell sequencing of gamete genomes. Genome Biology, 2020, 21, 306.	3.8	44
20	Study of Cell-Type-Specific Chromatin Organization: In Situ Hi-C Library Preparation for Low-Input Plant Materials. Methods in Molecular Biology, 2020, 2093, 115-127.	0.4	4
21	Implications of liquid–liquid phase separation in plant chromatin organization and transcriptional control. Current Opinion in Genetics and Development, 2019, 55, 59-65.	1.5	20
22	Plant lamin-like proteins mediate chromatin tethering at the nuclear periphery. Genome Biology, 2019, 20, 87.	3.8	79
23	A spatiotemporally regulated transcriptional complex underlies heteroblastic development of leaf hairs in <i>Arabidopsis thaliana</i> . EMBO Journal, 2019, 38, .	3.5	41
24	Pseudo-chromosome–length genome assembly of a double haploid "Bartlett―pear (Pyrus communis L.). GigaScience, 2019, 8, .	3.3	76
25	Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses. Developmental Cell, 2018, 44, 348-361.e7.	3.1	121
26	The Rosa genome provides new insights into the domestication of modern roses. Nature Genetics, 2018, 50, 772-777.	9.4	344
27	Not just gene expression: 3D implications of chromatin modifications during sexual plant reproduction. Plant Cell Reports, 2018, 37, 11-16.	2.8	4
28	Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes. ELife, 2018, 7, .	2.8	32
29	Three-dimensional chromatin packing and positioning of plant genomes. Nature Plants, 2018, 4, 521-529.	4.7	100
30	Genome-Wide Identification of Chromatin Domains Anchored at the Nuclear Periphery in Plants. Methods in Molecular Biology, 2018, 1830, 381-393.	0.4	0
31	In Situ Hi-C Library Preparation for Plants to Study Their Three-Dimensional Chromatin Interactions on a Genome-Wide Scale. Methods in Molecular Biology, 2017, 1629, 155-166.	0.4	19
32	Nonrandom domain organization of the <i>Arabidopsis</i> genome at the nuclear periphery. Genome Research, 2017, 27, 1162-1173.	2.4	96
33	easyGWAS: A Cloud-Based Platform for Comparing the Results of Genome-Wide Association Studies. Plant Cell, 2017, 29, 5-19.	3.1	98
34	Prominent topologically associated domains differentiate global chromatin packing in rice from Arabidopsis. Nature Plants, 2017, 3, 742-748.	4.7	200
35	Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid. Genome Biology, 2017, 18, 157.	3.8	86
36	Genome-wide analysis of chromatin packing in <i>Arabidopsis thaliana</i> at single-gene resolution. Genome Research, 2016, 26, 1057-1068.	2.4	187

CHANG LIU

#	Article	IF	CITATIONS
37	Chromatin in 3D: progress and prospects for plants. Genome Biology, 2015, 16, 170.	3.8	61
38	Genome-wide analysis of local chromatin packing in <i>Arabidopsis thaliana</i> . Genome Research, 2015, 25, 246-256.	2.4	254
39	Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nature Communications, 2014, 5, 4601.	5.8	238
40	A Conserved Genetic Pathway Determines Inflorescence Architecture in Arabidopsis and Rice. Developmental Cell, 2013, 24, 612-622.	3.1	193
41	FTIP1 Is an Essential Regulator Required for Florigen Transport. PLoS Biology, 2012, 10, e1001313.	2.6	265
42	Genomeâ€wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant Journal, 2012, 70, 549-561.	2.8	161
43	<i>MOTHER OF FT AND TFL1</i> Regulates Seed Germination through a Negative Feedback Loop Modulating ABA Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 1733-1748.	3.1	293
44	Pin1At Encoding a Peptidyl-Prolyl cis/trans Isomerase Regulates Flowering Time in Arabidopsis. Molecular Cell, 2010, 37, 112-122.	4.5	40
45	Regulation of Floral Patterning by Flowering Time Genes. Developmental Cell, 2009, 16, 711-722.	3.1	344
46	Coming into bloom: the specification of floral meristems. Development (Cambridge), 2009, 136, 3379-3391.	1.2	127
47	A Repressor Complex Governs the Integration of Flowering Signals in Arabidopsis. Developmental Cell, 2008, 15, 110-120.	3.1	443
48	Direct interaction of <i>AGL24</i> and <i>SOC1</i> integrates flowering signals in <i>Arabidopsis</i> . Development (Cambridge), 2008, 135, 1481-1491.	1.2	305
49	Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development (Cambridge), 2007, 134, 1901-1910.	1.2	255
50	Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate. Development (Cambridge), 2007, 134, 2073-2081.	1.2	178
51	GLABROUS INFLORESCENCE STEMS Modulates the Regulation by Gibberellins of Epidermal Differentiation and Shoot Maturation in Arabidopsis. Plant Cell, 2006, 18, 1383-1395.	3.1	134