Darbhasayanam Srinivasacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550119/publications.pdf Version: 2024-02-01

		377584	466096
141	1,744	21	32
papers	citations	h-index	g-index
143	143	143	1026
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Local Thermal Nonequilibrium on the Stability of the Flow in a Vertical Channel Filled With Nanofluid Saturated Porous Medium. Journal of Heat Transfer, 2022, 144, .	1.2	3
2	Mixed Convection Flow across a Vertical Cone with Heat Source/Sink and Chemical Reaction Effects. Mathematical Models and Computer Simulations, 2022, 14, 532-546.	0.1	8
3	Linear stability of convection in a vertical channel filled with nanofluid saturated porous medium. Heat Transfer, 2021, 50, 3220-3239.	1.7	9
4	Mixed Convection Fluid Flow Over a Vertical Cone Saturated Porous Media with Double Dispersion and Injection/Suction Effects. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	10
5	Thermal radiation and double diffusive effects on bioconvection flow of a nanofluid past an inclined wavy surface. Thermal Science and Engineering Progress, 2021, 22, 100830.	1.3	12
6	Computational Analysis of Double Diffusive Bioconvection of a Nanofluid Past an Inclined Wavy Surface. International Journal of Applied and Computational Mathematics, 2021, 7, 1.	0.9	0
7	Influence of Soret and Dufour on mixed convection flow across a vertical cone. Heat Transfer, 2021, 50, 8280-8300.	1.7	3
8	Couple stress nanofluid flow through a bifurcated artery — Application of catheterization process. Applied Mathematics, 2021, 36, 492-511.	0.6	0
9	Pulsatile Flow of Copper Suspended Nanofluid Venture Through a Bifurcated Artery. Communications in Mathematics and Applications, 2021, 12, 1051-1068.	0.1	Ο
10	Mathematical Modeling of Blood Flow Through a Stenosed Bifurcated Artery With Heat Source and Magnetic Effect. Communications in Mathematics and Applications, 2021, 12, 1005-1011.	0.1	0
11	Free convection in a Brinkman-Darcy flow of solutal stratified micropolar fluid under radiation boundary conditions. AIP Conference Proceedings, 2020, , .	0.3	1
12	Unsteady Bioconvection in a Squeezing Flow of a Couple-Stress Fluid Through Horizontal Channel. International Journal of Applied and Computational Mathematics, 2020, 6, 1.	0.9	9
13	Bioconvection of Micropolar Fluid in an Annulus. International Journal of Mathematical, Engineering and Management Sciences, 2020, 5, 237-247.	0.4	Ο
14	Influence of Non-linear Boussinesq Approximation on Natural Convective Flow of a Power-Law Fluid along an Inclined Plate under Convective Thermal Boundary Condition. Nonlinear Engineering, 2019, 8, 94-106.	1.4	18
15	Inclined Magnetic Field, Thermal Radiation, and Hall Current Effects on Mixed Convection Flow Between Vertical Parallel Plates. Journal of Heat Transfer, 2019, 141, .	1.2	8
16	Bioconvection in a squeezing flow of a micropolar fluid in a horizontal channel. Heat Transfer - Asian Research, 2019, 48, 2155-2173.	2.8	8
17	Effects of nonlinear Boussinesq approximation and double dispersion on a micropolar fluid flow under convective thermal condition. Heat Transfer - Asian Research, 2019, 48, 414-434.	2.8	12
18	Effect of Viscous Dissipation and Thermoporesis on the Flow Over an Exponentially Stretching Sheet. International Journal of Applied Mechanics and Engineering, 2019, 24, 425-438.	0.3	11

#	Article	IF	CITATIONS
19	Entropy Generation Analysis for a Micropolar Fluid Flow in an Annulus. Lecture Notes in Mechanical Engineering, 2019, , 9-15.	0.3	0
20	Effect of Chemical Reaction and Thermal Radiation on the Flow over an Exponentially Stretching Sheet with Convective Thermal Condition. Lecture Notes in Mechanical Engineering, 2019, , 257-266.	0.3	0
21	INCLINED MAGNETIC FIELD AND SORET EFFECTS ON MIXED CONVECTION FLOW BETWEEN VERTICAL PARALLEL PLATES. Journal of Applied Analysis and Computation, 2019, 9, 2111-2123.	0.2	2
22	Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions. Ain Shams Engineering Journal, 2018, 9, 245-255.	3.5	36
23	Effect of Slip and Convective Boundary Conditions on Entropy Generation in a Porous Channel due to Micropolar Fluid Flow. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 11-24.	0.4	12
24	Nonlinear Convective Flow of Non-Newtonian Fluid over an Inclined Plate with Convective Surface Condition: A Darcy–Forchheimer Model. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	0.9	17
25	Pulsatile flow of couple stress fluid through a bifurcated artery. Ain Shams Engineering Journal, 2018, 9, 883-893.	3.5	5
26	Double dispersion effect on nonlinear convective flow over an inclined plate in a micropolar fluid saturated non-Darcy porous medium. Engineering Science and Technology, an International Journal, 2018, 21, 984-995.	2.0	11
27	Effect of thermal radiation on mixed convection of a nanofluid from an inclined wavy surface embedded in a non-Darcy porous medium with wall heat flux. Propulsion and Power Research, 2018, 7, 147-157.	2.0	12
28	Effect of Double Stratification, Cross-Diffusion and Hall Currents on the Flow Over an Exponentially Stretching Sheet. Journal of Nanofluids, 2018, 7, 961-973.	1.4	0
29	Slow Steady Rotation of an Approximate Sphere in an Approximate Spherical Container with Slip Surfaces. International Journal of Applied and Computational Mathematics, 2017, 3, 987-999.	0.9	7
30	Analysis of Entropy Generation Due to Micropolar Fluid Flow in a Rectangular Duct Subjected to Slip and Convective Boundary Conditions. Journal of Heat Transfer, 2017, 139, .	1.2	5
31	Modeling of Blood Flow Through a Bifurcated Artery Using Nanofluid. BioNanoScience, 2017, 7, 464-474.	1.5	6
32	Hall and ion slip effects on mixed convection flow of nanofluid between two concentric cylinders. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 24, 223-231.	1.0	23
33	Entropy generation of micropolar fluid flow in an inclined porous pipe with convective boundary conditions. Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 729-740.	0.8	12
34	Quadratic Convective Flow of a Micropolar Fluid along an Inclined Plate in a Non-Darcy Porous Medium with Convective Boundary Condition. Nonlinear Engineering, 2017, 6, .	1.4	6
35	MHD Flow with Hall current and Joule Heating Effects over an Exponentially Stretching Sheet. Nonlinear Engineering, 2017, 6, .	1.4	4
36	Slip Viscous Flow Over an Exponentially Stretching Porous Sheet with Thermal Convective Boundary Conditions. International Journal of Applied and Computational Mathematics, 2017, 3, 3525-3537.	0.9	11

#	Article	IF	CITATIONS
37	Cross-diffusion effects on an exponentially stretching sheet in a doubly stratified viscous fluid. Engineering Science and Technology, an International Journal, 2017, 20, 1571-1578.	2.0	1
38	Two-Phase Particulate Suspension Flow in Convergent and Divergent Channels: A Numerical Model. International Journal of Applied and Computational Mathematics, 2017, 3, 843-858.	0.9	8
39	MICROPOLAR FLUID FLOW THROUGH A CYLINDER AND A SPHERE EMBEDDED IN A POROUS MEDIUM. International Journal of Fluid Mechanics Research, 2017, 44, 229-240.	0.4	6
40	Joule heating effect on entropy generation in MHD mixed convection flow of chemically reacting nanofluid between two concentric cylinders. International Journal of Heat and Technology, 2017, 35, 487-497.	0.3	4
41	ENTROPY GENERATION OF MICROPOLAR FLUID FLOW IN AN INCLINED POROUS PIPE. Advances and Applications in Fluid Mechanics, 2017, 20, 335-351.	0.1	0
42	Mixed convection flow of couple stress fluid between rotating discs with chemical reaction and double diffusion effects. Nonlinear Engineering, 2016, 5, .	1.4	0
43	Influence of Soret, Hall and Joule heating effects on mixed convection flow saturated porous medium in a vertical channel by Adomian Decomposition Method. Open Engineering, 2016, 6, .	0.7	3
44	Entropy generation in a micropolar fluid flow through an inclined channel. AEJ - Alexandria Engineering Journal, 2016, 55, 973-982.	3.4	49
45	Computational analysis of magnetic effects on pulsatile flow of couple stress fluid through a bifurcated artery. Computer Methods and Programs in Biomedicine, 2016, 137, 269-279.	2.6	18
46	Analytical study for Soret, Hall, and Joule heating effects on natural convection flow saturated porous medium in a vertical channel. Mathematical Sciences, 2016, 10, 139-148.	1.0	7
47	Mathematical model for blood flow through a bifurcated artery using couple stress fluid. Mathematical Biosciences, 2016, 278, 37-47.	0.9	18
48	Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium. AEJ - Alexandria Engineering Journal, 2016, 55, 1243-1253.	3.4	12
49	Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions. Energy, 2016, 111, 165-177.	4.5	43
50	Chemical reaction and radiation effects on mixed convection heat and mass transfer over a vertical plate in power-law fluid saturated porous medium. Journal of the Egyptian Mathematical Society, 2016, 24, 108-115.	0.6	35
51	Numerical solution to natural convection over an inclined wavy surface embedded in a porous medium saturated with a nanofluid. Meccanica, 2016, 51, 1723-1737.	1.2	3
52	NUMERICAL STUDY OF MIXED CONVECTION FLOW OF A MICROPOLAR FLUID TOWARDS PERMEABLE VERTICAL PLATE WITH CONVECTIVE BOUNDARY CONDITION. Journal of Applied Analysis and Computation, 2016, 6, 254-270.	0.2	1
53	Hall and Ion-Slip Effects on Natural Convection Flow in a Vertical Channel Filled with Nanofluid. Journal of Nanofluids, 2016, 5, 982-992.	1.4	0
54	Convective Heat Transfer Flow along a Sinusoidal Wavy Surface in a Porous Medium with Variable Permeability. Procedia Engineering, 2015, 127, 524-530.	1.2	3

#	Article	IF	CITATIONS
55	Effect of Magnetic Field on Entropy Generation Due to Micropolar Fluid Flow in a Rectangular Duct. Procedia Engineering, 2015, 127, 1150-1157.	1.2	5
56	Mixed Convection on a Vertical Plate in a Power-law Fluid Saturated Porous Medium with Cross Diffusion Effects. Procedia Engineering, 2015, 127, 591-597.	1.2	9
57	Double Stratification Effects on Mixed Convection along a Vertical Plate in a Non-darcy Porous Medium. Procedia Engineering, 2015, 127, 986-993.	1.2	11
58	Effects of Double Dispersion on Mixed Convection in a Power-law Fluid Saturated Porous Medium with Variable Properties Using Lie Scaling Group Transformations. Procedia Engineering, 2015, 127, 362-369.	1.2	6
59	MHD Effect on the Couple Stress Fluid Flow Through a Bifurcated Artery. Procedia Engineering, 2015, 127, 877-884.	1.2	11
60	Free Convection of a Nanofluid over an Inclined Wavy Surface Embedded in a Porous Medium with Wall Heat Flux. Procedia Engineering, 2015, 127, 40-47.	1.2	5
61	Dispersion Effects on Mixed Convection over a Vertical Wavy Surface in a Porous Medium with Variable Properties. Procedia Engineering, 2015, 127, 271-278.	1.2	7
62	Similarity Solution for Free Convection Flow of a Micropolar Fluid under Convective Boundary Condition via Lie Scaling Group Transformations. Advances in High Energy Physics, 2015, 2015, 1-16.	0.5	11
63	Mixed Convection over an Inclined Wavy Surface in a Nanofluid Saturated Non-Darcy Porous Medium with Radiation Effect. International Journal of Chemical Engineering, 2015, 2015, 1-15.	1.4	29
64	RADIATION EFFECT ON NATURAL CONVECTION OVER AN INCLINED WAVY SURFACE EMBEDDED IN A NON-DARCY POROUS MEDIUM SATURATED WITH A NANOFLUID. Journal of Porous Media, 2015, 18, 777-789.	1.0	8
65	Non-Darcy natural convection from a vertical plate with a uniform wall temperature and concentration in a doubly stratified porous medium. Journal of Applied Mechanics and Technical Physics, 2015, 56, 590-600.	0.1	5
66	Mixed convection over an inclined wavy surface embedded in a nanofluid saturated porous medium. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1774-1792.	1.6	8
67	MHD Boundary Layer Flow of a Nanofluid Past a Wedge. Procedia Engineering, 2015, 127, 1064-1070.	1.2	53
68	Non-Darcy Mixed Convection Flow Past a Vertical Porous Plate with Joule Heating, Hall and Ion-Slip Effects. Procedia Engineering, 2015, 127, 162-169.	1.2	8
69	Thermal radiation and diffusion effects on natural convection flow of couple stress fluid in a vertical channel. Progress in Computational Fluid Dynamics, 2015, 15, 388.	0.1	4
70	Soret and Dufour effects on mixed convection along a vertical wavy surface in a porous medium with variable properties. Ain Shams Engineering Journal, 2015, 6, 553-564.	3.5	50
71	Numerical Study of Free Convection in a Doubly Stratified Non-Darcy Porous Medium Using Spectral Quasilinearization Method. International Journal of Nonlinear Sciences and Numerical Simulation, 2015, 16, 173-183.	0.4	11
72	Entropy generation in a micropolar fluid flow through an inclined channel with slip and convective boundary conditions. Energy, 2015, 91, 72-83.	4.5	43

#	Article	IF	CITATIONS
73	Effect of double stratification on mixed convection boundary layer flow of a nanofluid past a vertical plate in a porous medium. Applied Nanoscience (Switzerland), 2015, 5, 29-38.	1.6	42
74	Mixed convection in MHD doubly stratified micropolar fluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37, 431-440.	0.8	2
75	THERMAL STRATIFICATION ON NATURAL CONVECTION OVER AN INCLINED WAVY SURFACE IN A NANOFLUID SATURATED POROUS MEDIUM. Computational Thermal Sciences, 2015, 7, 405-415.	0.5	2
76	Non-Darcy Mixed Convection in a Doubly Stratified Porous Medium with Soret-Dufour Effects. International Journal of Engineering Mathematics, 2014, 2014, 1-9.	0.2	21
77	NON-DARCY MIXED CONVECTION HEAT AND MASS TRANSFER FLOW OF DOUBLY STRATIFIED COUPLE STRESS FLUID. Special Topics and Reviews in Porous Media, 2014, 5, 287-296.	0.6	2
78	MIXED CONVECTION FLOW OF DOUBLY STRATIFIED COUPLE STRESS FLUID WITH HEAT AND MASS FLUXES. Computational Thermal Sciences, 2014, 6, 397-404.	0.5	0
79	Free convection in MHD micropolar fluid with radiation and chemical reaction effects. Chemical Industry and Chemical Engineering Quarterly, 2014, 20, 183-195.	0.4	12
80	Mixed Convection Boundary Layer Flow of a Nanofluid Past a Vertical Plate in a Doubly Stratified Porous Medium. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1853-1862.	0.4	2
81	Soret and Dufour Effects on Nonâ€Darcy Free Convection in a Power‣aw Fluid in the Presence of a Magnetic Field and Stratification. Heat Transfer - Asian Research, 2014, 43, 592-606.	2.8	10
82	Mixed Convection Over a Vertical Plate in a Doubly Stratified Fluidâ€6aturated Nonâ€Darcy Porous Medium with Crossâ€Diffusion Effects. Heat Transfer - Asian Research, 2014, 43, 677-690.	2.8	2
83	Non-similar solution for natural convective boundary layer flow of a nanofluid past a vertical plate embedded in a doubly stratified porous medium. International Journal of Heat and Mass Transfer, 2014, 71, 431-438.	2.5	30
84	Flow of Micropolar Fluid Between Parallel Plates with Soret and Dufour Effects. Arabian Journal for Science and Engineering, 2014, 39, 5085-5093.	1.1	11
85	Mixed Convection Flow of Chemically Reacting Couple Stress Fluid in a Vertical Channel with Soret and Dufour Effects. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15, 413-421.	1.4	19
86	Soret and Dofour effects on MHD free convection in a micropolar fluid. Afrika Matematika, 2014, 25, 693-705.	0.4	6
87	SORET AND DUFOUR EFFECTS ON MIXED CONVECTION FLOW OF COUPLE STRESS FLUID IN A NON-DARCY POROUS MEDIUM WITH HEAT AND MASS FLUXES. Journal of Porous Media, 2014, 17, 93-101.	1.0	9
88	NON-DARCY MIXED CONVECTION INDUCED BY A VERTICAL PLATE IN A DOUBLY STRATIFIED POROUS MEDIUM. Journal of Porous Media, 2014, 17, 197-209.	1.0	3
89	Natural Convection Heat and Mass Transfer in a Micropolar Fluid with Thermal and Mass Stratification. International Journal for Computational Methods in Engineering Science and Mechanics, 2013, 14, 401-413.	1.4	7
90	Soret and dufour effects on MHD mixed convection heat and mass transfer in a micropolar fluid. Open Engineering, 2013, 3, .	0.7	2

#	Article	IF	CITATIONS
91	Effect of double stratification on MHD free convection in a micropolar fluid. Journal of the Egyptian Mathematical Society, 2013, 21, 370-378.	0.6	68
92	Axisymmetric creeping flow past a porous approximate sphere with an impermeable core. European Physical Journal Plus, 2013, 128, 1.	1.2	4
93	Cross–diffusion effects on mixed convection from an exponentially stretching surface in non–Darcy porous medium. Heat Transfer - Asian Research, 2013, 42, 111-124.	2.8	10
94	Analytical solution for Hall and Ion-slip effects on mixed convection flow of couple stress fluid between parallel disks. Mathematical and Computer Modelling, 2013, 57, 2494-2509.	2.0	24
95	Mixed convection heat and mass transfer over a vertical plate in a powerâ€law fluidâ€saturated porous medium with radiation and chemical reaction effects. Heat Transfer - Asian Research, 2013, 42, 485-499.	2.8	6
96	Soret and dufour effects on free convection flow of a couple stress fluid in a vertical channel with chemical reaction. Chemical Industry and Chemical Engineering Quarterly, 2013, 19, 45-55.	0.4	16
97	THERMAL RADIATION AND CHEMICAL REACTION EFFECTS ON MHD MIXED CONVECTION HEAT AND MASS TRANSFER IN A MICROPOLAR FLUID. Mechanika, 2013, 19, .	0.3	4
98	Cross Diffusion Effects on Chemically Reacting Magnetohydrodynamic Micropolar Fluid Between Concentric Cylinders. Journal of Heat Transfer, 2013, 135, .	1.2	5
99	FREE CONVECTION IN A NON-NEWTONIAN POWER-LAW FLUID-SATURATED POROUS MEDIUM WITH CHEMICAL REACTION AND RADIATION EFFECTS. Special Topics and Reviews in Porous Media, 2013, 4, 223-236.	0.6	2
100	MIXED CONVECTION HEAT AND MASS TRANSFER IN A DOUBLY STRATIFIED MICROPOLAR FLUID. Computational Thermal Sciences, 2013, 5, 273-287.	0.5	5
101	Soret and Dufour effects on mixed convection from a vertical plate in power-law fluid saturated porous medium. Theoretical and Applied Mechanics, 2013, 40, 525-542.	0.1	13
102	CHEMICAL REACTION AND RADIATION EFFECTS ON NATURAL CONVECTION IN POROUS MEDIUM SATURATED WITH POWER-LAWFLUID. Frontiers in Heat and Mass Transfer, 2013, 3, .	0.1	1
103	MIXED CONVECTION IN MHD MICROPOLAR FLUID WITH RADIATION AND CHEMICAL REACTION EFFECTS. Heat Transfer Research, 2013, , .	0.9	1
104	Effect of steady streaming on the flow of micropolar fluid through a contricted annulus. , 2012, , .		0
105	FLOW OF MICROPOLAR FLUID THROUGH CATHETERIZED ARTERY — A MATHEMATICAL MODEL. International Journal of Biomathematics, 2012, 05, 1250019.	1.5	16
106	Creeping motion of a porous approximate sphere with an impermeable core in a spherical container. European Journal of Mechanics, B/Fluids, 2012, 36, 104-114.	1.2	7
107	Magnetic and Double Dispersion Effects on Free Convection in a Non-Darcy Porous Medium Saturated with Power-Law Fluid. International Journal for Computational Methods in Engineering Science and Mechanics, 2012, 13, 210-218.	1.4	10
108	Double diffusive natural convection in power-law fluid saturated porous medium with Soret and Dufour Effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2012, 34, 525-530.	0.8	12

#	Article	IF	CITATIONS
109	Mixed convection in a doubly stratified micropolar fluid saturated nonâ€Darcy porous medium. Canadian Journal of Chemical Engineering, 2012, 90, 1311-1322.	0.9	10
110	Natural convection flow of a couple stress fluid between two vertical parallel plates with Hall and ion-slip effects. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 41-50.	1.5	11
111	Steady rotation of a composite sphere in a concentric spherical cavity. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 653-658.	1.5	14
112	Mixed convection flow of couple stress fluid between parallel vertical plates with Hall and Ion-slip effects. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 2447-2462.	1.7	37
113	SLOW STEADY ROTATION OF A POROUS SPHERE IN A SPHERICAL CONTAINER. Journal of Porous Media, 2012, 15, 1105-1110.	1.0	6
114	CREEPING FLOW PAST A POROUS APPROXIMATELY SPHERICAL SHELL: STRESS JUMP BOUNDARY CONDITION. ANZIAM Journal, 2011, 52, 289-300.	0.3	3
115	Magnetic effect on free convection in a non-darcy porous medium saturated with doubly stratified power-law fluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33, 8-14.	0.8	12
116	Mixed Convection Heat and Mass Transfer in a Micropolar Fluid with Soret and Dufour Effects. Advances in Applied Mathematics and Mechanics, 2011, 3, 389-400.	0.7	9
117	Free convective heat and mass transfer in a doubly stratified non-Darcy micropolar fluid. Korean Journal of Chemical Engineering, 2011, 28, 1824-1832.	1.2	17
118	Creeping flow past a porous approximate sphere – Stress jump boundary condition. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2011, 91, 824-831.	0.9	7
119	Effect of Double Stratification on Free Convection in a Micropolar Fluid. Journal of Heat Transfer, 2011, 133, .	1.2	10
120	Soret and Dufour effects on mixed convection in a non-Darcy porous medium saturated with micropolar fluid. Nonlinear Analysis: Modelling and Control, 2011, 16, 100-115.	1.1	29
121	Heat and mass transfer by natural convection in a doubly stratified non-Darcy micropolar fluid. International Communications in Heat and Mass Transfer, 2010, 37, 873-880.	2.9	31
122	Flow and heat transfer of couple stress fluid in a porous channel with expanding and contracting walls. International Communications in Heat and Mass Transfer, 2009, 36, 180-185.	2.9	67
123	Hydromagnetic effects on the flow of a micropolar fluid in a diverging channel. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2009, 89, 123-131.	0.9	3
124	MAGNETOHYDRODYNAMIC FLOW OF A MICROPOLAR FLUID IN A CIRCULAR PIPE WITH HALL EFFECTS. ANZIAM Journal, 2009, 51, 277-285.	0.3	10
125	Effect of couple stresses on the flow in a constricted annulus. Archive of Applied Mechanics, 2008, 78, 251-257.	1.2	20
126	Effect of couple stresses on the pulsatile flow through a constricted annulus. Comptes Rendus - Mecanique, 2008, 336, 820-827.	2.1	28

#	Article	IF	CITATIONS
127	Numerical Solution to the MHD Flow of Micropolar Fluid Between Parallel Porous Plates. International Journal of Fluid Mechanics Research, 2008, 35, 365-373.	0.4	2
128	Flow past a porous approximate spherical shell. Zeitschrift Fur Angewandte Mathematik Und Physik, 2007, 58, 646-658.	0.7	8
129	Influence of Wall Properties on Perstalsis in the Presence of Magnetic Field. International Journal of Fluid Mechanics Research, 2007, 34, 374-386.	0.4	9
130	Motion of a porous sphere in a spherical container. Comptes Rendus - Mecanique, 2005, 333, 612-616.	2.1	9
131	Creeping flow of micropolar fluid past a porous sphere. Applied Mathematics and Computation, 2004, 153, 843-854.	1.4	22
132	Combined radiation and mixed convection from a vertical wall with suction/injection in a non?Darcy porous medium. Acta Mechanica, 2004, 168, 145-156.	1.1	32
133	Creeping flow past a porous approximate sphere. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2003, 83, 499-504.	0.9	21
134	Peristaltic pumping of a micropolar fluid in a tube. Acta Mechanica, 2003, 161, 165-178.	1.1	92
135	Unsteady stokes flow of micropolar fluid between two parallel porous plates. International Journal of Engineering Science, 2001, 39, 1557-1563.	2.7	46
136	Mixed convection of a nanofluid past an inclined wavy surface in the presence of gyrotactic microorganisms. Heat Transfer, 0, , .	1.7	2
137	EFFECTS OF THERMAL AND SOLUTAL STRATIFICATION ON MIXED CONVECTION FLOW ALONG A VERTICAL PLATE SATURATED WITH COUPLE STRESS FLUID. Frontiers in Heat and Mass Transfer, 0, 5, .	0.1	1
138	Natural Convection on a Porous Vertical Plate in a Doubly Stratified Non-Darcy Porous Medium. Frontiers in Heat and Mass Transfer, 0, 6, .	0.1	4
139	MIXED CONVECTION FLOW OF NANOFLUID IN A VERTICAL CHANNEL WITH HALL AND ION-SLIP EFFECTS. Frontiers in Heat and Mass Transfer, 0, 8, .	0.1	7
140	Magnetohydrodynamic flow of a micropolar fluid in a circular pipe with Hall effects. ANZIAM Journal, 0, 51, .	0.0	0
141	FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH HALL, THERMAL RADIATION AND CHEMICAL REACTION EFFECTS. Frontiers in Heat and Mass Transfer, 0, 9, .	0.1	1