John Tonry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550032/publications.pdf

Version: 2024-02-01

61	28,147	38	61
papers	citations	h-index	g-index
63	63	63	13969
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Apophis Planetary Defense Campaign. Planetary Science Journal, 2022, 3, 123.	3.6	4
2	Comparison of the Physical Properties of the L4 and L5 Trojan Asteroids from ATLAS Data. Planetary Science Journal, 2021, 2, 6.	3.6	6
3	NEO Population, Velocity Bias, and Impact Risk from an ATLAS Analysis. Planetary Science Journal, 2021, 2, 12.	3.6	7
4	ASASSN-14ko is a Periodic Nuclear Transient in ESO 253-G003. Astrophysical Journal, 2021, 910, 125.	4.5	45
5	Discovery of superslow rotating asteroids with ATLAS and ZTF photometry. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3872-3881.	4.4	9
6	New or Increased Cometary Activity in (2060) 95P/Chiron. Research Notes of the AAS, 2021, 5, 211.	0.7	3
7	Investigating Taxonomic Diversity within Asteroid Families through ATLAS Dual-band Photometry. Astrophysical Journal, Supplement Series, 2020, 247, 13.	7.7	15
8	Beyond Gaia: Asteroseismic Distances of M Giants Using Ground-based Transient Surveys. Astronomical Journal, 2020, 160, 18.	4.7	13
9	The Outburst of the Young Star Gaia19bey. Astronomical Journal, 2020, 160, 164.	4.7	14
10	Pan-STARRS Photometric and Astrometric Calibration. Astrophysical Journal, Supplement Series, 2020, 251, 6.	7.7	138
11	Pan-STARRS Pixel Processing: Detrending, Warping, Stacking. Astrophysical Journal, Supplement Series, 2020, 251, 4.	7.7	77
12	The Pan-STARRS1 Database and Data Products. Astrophysical Journal, Supplement Series, 2020, 251, 7.	7.7	348
13	Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey. Astrophysical Journal, 2019, 884, 36.	4.5	59
14	PS18kh: A New Tidal Disruption Event with a Non-axisymmetric Accretion Disk. Astrophysical Journal, 2019, 880, 120.	4.5	68
15	The Sporadic Activity of (6478) Gault: A YORP-driven Event?. Astrophysical Journal Letters, 2019, 874, L20.	8.3	33
16	The New EXor Outburst of ESO-Hα 99 Observed by Gaia ATLAS and TESS. Astronomical Journal, 2019, 158, 241.	4.7	17
17	Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters. Astrophysical Journal, 2018, 857, 51.	4.5	116
18	Interstellar Interlopers: Number Density and Origin of â€~Oumuamua-like Objects. Astrophysical Journal Letters, 2018, 855, L10.	8.3	121

#	Article	IF	Citations
19	SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium ^{â^—} . Astrophysical Journal Letters, 2018, 854, L14.	8.3	28
20	The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient. Astrophysical Journal Letters, 2018, 865, L3.	8.3	146
21	The ATLAS All-Sky Stellar Reference Catalog. Astrophysical Journal, 2018, 867, 105.	4.5	137
22	Cepheids in M31: The PAndromeda Cepheid Sample. Astronomical Journal, 2018, 156, 130.	4.7	15
23	A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS). Astronomical Journal, 2018, 156, 241.	4.7	195
24	The Profile of the Galactic Halo from Pan-STARRS1 3Ï€ RR Lyrae. Astrophysical Journal, 2018, 859, 31.	4.5	33
25	The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophysical Journal, 2018, 859, 101.	4.5	1,694
26	Machine-learned Identification of RR Lyrae Stars from Sparse, Multi-band Data: The PS1 Sample. Astronomical Journal, 2017, 153, 204.	4.7	112
27	Foreground and Sensitivity Analysis for Broadband (2D) 21 cm–Lyα and 21 cm–Hα Correlation Experiments Probing the Epoch of Reionization. Astrophysical Journal, 2017, 849, 50.	4.5	4
28	Constraints on the Progenitor of SN 2016gkg from Its Shock-cooling Light Curve. Astrophysical Journal Letters, 2017, 837, L2.	8.3	49
29	Observations of the GRB Afterglow ATLAS17aeu and Its Possible Association with GW 170104. Astrophysical Journal, 2017, 850, 149.	4.5	38
30	Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves. Astrophysical Journal, 2017, 836, 186.	4.5	50
31	A SYSTEMATIC SEARCH FOR PERIODICALLY VARYING QUASARS IN PAN-STARRS1: AN EXTENDED BASELINE TEST IN MEDIUM DEEP SURVEY FIELD MD09. Astrophysical Journal, 2016, 833, 6.	4.5	56
32	A GLOBAL ASTROMETRIC SOLUTION FOR PAN-STARRS REFERENCED TO ICRF2. Astronomical Journal, 2016, 152, 53.	4.7	10
33	DISCOVERY OF A NEW RETROGRADE TRANS-NEPTUNIAN OBJECT: HINT OF A COMMON ORBITAL PLANE FOR LOW SEMIMAJOR AXIS, HIGH-INCLINATION TNOS AND CENTAURS. Astrophysical Journal Letters, 2016, 827, L24.	8.3	70
34	A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 827, L40.	8.3	38
35	LIGHT CURVES OF 213 TYPE Ia SUPERNOVAE FROM THE ESSENCE SURVEY. Astrophysical Journal, Supplement Series, 2016, 224, 3.	7.7	20
36	THE PAN-STARRS 1 DISCOVERIES OF FIVE NEW NEPTUNE TROJANS. Astronomical Journal, 2016, 152, 147.	4.7	11

#	Article	IF	CITATIONS
37	BROWN DWARFS IN YOUNG MOVING GROUPS FROM PAN-STARRS1. I. AB DORADUS. Astrophysical Journal, 2016, 821, 120.	4.5	37
38	A THREE-DIMENSIONAL MAP OF MILKY WAY DUST. Astrophysical Journal, 2015, 810, 25.	4.5	408
39	SAGITTARIUS II, DRACO II AND LAEVENS 3: THREE NEW MILKY WAY SATELLITES DISCOVERED IN THE PAN-STARRS 1 3 <i>i; ∈</i> i>SURVEY. Astrophysical Journal, 2015, 813, 44.	4.5	196
40	A SEARCH FOR L/T TRANSITION DWARFS WITH PAN-STARRS1 AND <i>WISE</i> . II. L/T TRANSITION ATMOSPHERES AND YOUNG DISCOVERIES. Astrophysical Journal, 2015, 814, 118.	4.5	57
41	Detection of a supervoid aligned with the cold spot of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2015, 450, 288-294.	4.4	69
42	DISCOVERY OF EIGHT <i>z</i> å^1/4 6 QUASARS FROM Pan-STARRS1. Astronomical Journal, 2014, 148, 14.	4.7	126
43	HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES. Astrophysical Journal, 2014, 787, 138.	4.5	221
44	A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3Ï€ SURVEY. Astrophysical Journal Letters, 2014, 786, L3.	8.3	88
45	MEASURING DISTANCES AND REDDENINGS FOR A BILLION STARS: TOWARD A 3D DUST MAP FROM PAN-STARRS 1. Astrophysical Journal, 2014, 783, 114.	4.5	84
46	A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1. Astrophysical Journal, 2014, 789, 15.	4.5	85
47	The Pan-STARRS wide-field optical/NIR imaging survey. Proceedings of SPIE, 2010, , .	0.8	337
48	NewHubble Space TelescopeDiscoveries of Type Ia Supernovae atz≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy. Astrophysical Journal, 2007, 659, 98-121.	4.5	1,430
49	Discovery of Strong Lensing by an Elliptical Galaxy at $z=0.0345$. Astrophysical Journal, 2005, 625, L103-L106.	4.5	20
50	Type la Supernova Discoveries atz > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution. Astrophysical Journal, 2004, 607, 665-687.	4.5	3,498
51	Identification of Type Ia Supernovae at Redshift 1.3 and Beyond with the Advanced Camera for Surveys on the Hubble Space Telescope. Astrophysical Journal, 2004, 600, L163-L166.	4.5	66
52	Discovery of a Methane Dwarf from the I[CLC]f[/CLC]A Deep Survey. Astrophysical Journal, 2002, 568, L107-L111.	4.5	21
53	The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration. Astrophysical Journal, 2001, 560, 49-71.	4.5	759
54	Optical Spectra of Type I[CLC]a[/CLC] Supernovae at [CLC][ITAL]z[/ITAL][/CLC] = 0.46 and [CLC][ITAL]z[/ITAL][/CLC] = 1.2. Astrophysical Journal, 2000, 544, L111-L114.	4.5	49

#	Article	IF	CITATION
55	Tests of the Accelerating Universe with Nearâ€Infrared Observations of a Highâ€Redshift Type Ia Supernova. Astrophysical Journal, 2000, 536, 62-67.	4.5	164
56	The Orthogonal Transfer CCD. Experimental Astronomy, 1998, 8, 77-87.	3.7	6
57	Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astronomical Journal, 1998, 116, 1009-1038.	4.7	14,196
58	The Highâ€Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae. Astrophysical Journal, 1998, 507, 46-63.	4.5	1,194
59	Supernova Limits on the Cosmic Equation of State. Astrophysical Journal, 1998, 509, 74-79.	4.5	660
60	A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample. Astrophysical Journal, Supplement Series, 1992, 83, 29.	7.7	301
61	A new technique for measuring extragalactic distances. Astronomical Journal, 1988, 96, 807.	4.7	276