
Jonathan M Elkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8550004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxia-inducible Factor (HIF) Asparagine Hydroxylase Is Identical to Factor Inhibiting HIF (FIH) and Is Related to the Cupin Structural Family. Journal of Biological Chemistry, 2002, 277, 26351-26355.	1.6	624
2	Structure of Factor-inhibiting Hypoxia-inducible Factor (HIF) Reveals Mechanism of Oxidative Modification of HIF-1α. Journal of Biological Chemistry, 2003, 278, 1802-1806.	1.6	342
3	Structural basis for protein-protein interactions in the 14-3-3 protein family. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17237-17242.	3.3	340
4	Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature, 2014, 508, 222-227.	13.7	336
5	Comprehensive characterization of the Published Kinase Inhibitor Set. Nature Biotechnology, 2016, 34, 95-103.	9.4	289
6	Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nature Chemical Biology, 2016, 12, 876-884.	3.9	249
7	X-ray Crystal Structure ofEscherichia coliTaurine/α-Ketoglutarate Dioxygenase Complexed to Ferrous Iron and Substratesâ€,â€j. Biochemistry, 2002, 41, 5185-5192.	1.2	216
8	Selectivity, Cocrystal Structures, and Neuroprotective Properties of Leucettines, a Family of Protein Kinase Inhibitors Derived from the Marine Sponge Alkaloid Leucettamine B. Journal of Medicinal Chemistry, 2012, 55, 9312-9330.	2.9	174
9	Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. Cancer Cell, 2016, 30, 273-289.	7.7	143
10	Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE, 2017, 12, e0181585.	1.1	131
11	Structures of Down Syndrome Kinases, DYRKs, Reveal Mechanisms of Kinase Activation and Substrate Recognition. Structure, 2013, 21, 986-996.	1.6	127
12	Family-wide Structural Analysis of Human Numb-Associated Protein Kinases. Structure, 2016, 24, 401-411.	1.6	124
13	Crystal Structure of Sphingosine Kinase 1 with PF-543. ACS Medicinal Chemistry Letters, 2014, 5, 1329-1333.	1.3	90
14	Donated chemical probes for open science. ELife, 2018, 7, .	2.8	80
15	Crystal Structure of Human Aurora B in Complex with INCENP and VX-680. Journal of Medicinal Chemistry, 2012, 55, 7841-7848.	2.9	77
16	Type II Inhibitors Targeting CDK2. ACS Chemical Biology, 2015, 10, 2116-2125.	1.6	75
17	Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles. Angewandte Chemie - International Edition, 2017, 56, 6264-6267.	7.2	74
18	WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Cell Reports, 2019, 26, 79-93.e8.	2.9	68

JONATHAN M ELKINS

#	Article	IF	CITATIONS
19	Structure of PICK1 and other PDZ domains obtained with the help of self-binding C-terminal extensions. Protein Science, 2007, 16, 683-694.	3.1	57
20	Identification and Structure–Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors. ACS Chemical Biology, 2015, 10, 310-319.	1.6	56
21	SGC-GAK-1: A Chemical Probe for Cyclin G Associated Kinase (GAK). Journal of Medicinal Chemistry, 2019, 62, 2830-2836.	2.9	56
22	Identification and Optimization of 4â€Anilinoquinolines as Inhibitors of Cyclinâ€G Associated Kinase. ChemMedChem, 2018, 13, 48-66.	1.6	51
23	Validation of the protein kinase <i>Pf</i> CLK3 as a multistage cross-species malarial drug target. Science, 2019, 365, .	6.0	51
24	Alternative oxidation by isopenicillin N synthase observed by X-ray diffraction. Chemistry and Biology, 2001, 8, 1231-1237.	6.2	47
25	Highly Functionalized Terpyridines as Competitive Inhibitors of AKAP–PKA Interactions. Angewandte Chemie - International Edition, 2013, 52, 12187-12191.	7.2	46
26	Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. European Journal of Medicinal Chemistry, 2013, 70, 758-767.	2.6	45
27	Synthesis and Structure–Activity Relationships of 3,5-Disubstituted-pyrrolo[2,3- <i>b</i>]pyridines as Inhibitors of Adaptor-Associated Kinase 1 with Antiviral Activity. Journal of Medicinal Chemistry, 2019, 62, 5810-5831.	2.9	44
28	Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis. Biochemical Journal, 2002, 366, 423-434.	1.7	39
29	Discovery of a Selective Allosteric Inhibitor Targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14. ACS Chemical Biology, 2017, 12, 2866-2874.	1.6	37
30	Crystal Structure and Mechanistic Implications of N2-(2-Carboxyethyl)arginine Synthase, the First Enzyme in the Clavulanic Acid Biosynthesis Pathway. Journal of Biological Chemistry, 2004, 279, 5685-5692.	1.6	36
31	Structure-kinetic relationship reveals the mechanism of selectivity of FAK inhibitors over PYK2. Cell Chemical Biology, 2021, 28, 686-698.e7.	2.5	36
32	Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Protein Expression and Purification, 2012, 81, 136-143.	0.6	35
33	SGC-AAK1-1: A Chemical Probe Targeting AAK1 and BMP2K. ACS Medicinal Chemistry Letters, 2020, 11, 340-345.	1.3	35
34	Unusual binding interactions in PDZ domain crystal structures help explain binding mechanisms. Protein Science, 2010, 19, 731-741.	3.1	34
35	Crystallographic studies on the reaction of isopenicillin N synthase with an unsaturated substrate analogue. Organic and Biomolecular Chemistry, 2003, 1, 1455-1460.	1.5	33
36	Crystal Structures of ABL-Related Gene (ABL2) in Complex with Imatinib, Tozasertib (VX-680), and a Type I Inhibitor of the Triazole Carbothioamide Class. Journal of Medicinal Chemistry, 2011, 54, 2359-2367.	2.9	33

JONATHAN M ELKINS

#	Article	IF	CITATIONS
37	X-ray crystal structure of ornithine acetyltransferase from the clavulanic acid biosynthesis gene cluster. Biochemical Journal, 2005, 385, 565-573.	1.7	32
38	Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles. Angewandte Chemie, 2017, 129, 6360-6363.	1.6	32
39	Interactions of Isopenicillin N Synthase with Cyclopropyl-Containing Substrate Analogues Reveal New Mechanistic Insight,. Biochemistry, 2007, 46, 4755-4762.	1.2	31
40	The centaurin γ-1 GTPase-like domain functions as an NTPase. Biochemical Journal, 2007, 401, 679-688.	1.7	29
41	X-ray Crystal Structure of ERK5 (MAPK7) in Complex with a Specific Inhibitor. Journal of Medicinal Chemistry, 2013, 56, 4413-4421.	2.9	29
42	The crystal structure of the RhoA–AKAP-Lbc DH–PH domain complex. Biochemical Journal, 2014, 464, 231-239.	1.7	29
43	NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Scientific Reports, 2017, 7, 5445.	1.6	29
44	An AKAP-Lbc-RhoA interaction inhibitor promotes the translocation of aquaporin-2 to the plasma membrane of renal collecting duct principal cells. PLoS ONE, 2018, 13, e0191423.	1.1	28
45	Fragment screening of cyclin G-associated kinase by weak affinity chromatography. Analytical and Bioanalytical Chemistry, 2012, 404, 2417-25.	1.9	25
46	Structural insights into the activation of MST3 by MO25. Biochemical and Biophysical Research Communications, 2013, 431, 604-609.	1.0	24
47	Structure of dystrophia myotonica protein kinase. Protein Science, 2009, 18, 782-791.	3.1	22
48	A device for the high-pressure oxygenation of protein crystals. Analytical Biochemistry, 2002, 308, 265-268.	1.1	21
49	Structural mechanism of synergistic activation of Aurora kinase B/C by phosphorylated INCENP. Nature Communications, 2019, 10, 3166.	5.8	21
50	Modular Synthesis of Di- and Trisubstituted Imidazoles from Ketones and Aldehydes: A Route to Kinase Inhibitors. Journal of Organic Chemistry, 2019, 84, 14187-14201.	1.7	18
51	Design and Analysis of the 4â€Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structureâ€Activity Relationships. ChemMedChem, 2020, 15, 26-49.	1.6	18
52	Binding and structural analyses of potent inhibitors of the human Ca2+/calmodulin dependent protein kinase kinase 2 (CAMKK2) identified from a collection of commercially-available kinase inhibitors. Scientific Reports, 2019, 9, 16452.	1.6	16
53	Towards the Development of an In vivo Chemical Probe for Cyclin G Associated Kinase (GAK). Molecules, 2019, 24, 4016.	1.7	16
54	The Intersection of Structural and Chemical Biology - An Essential Synergy. Cell Chemical Biology, 2016, 23, 173-182.	2.5	15

JONATHAN M ELKINS

#	Article	IF	CITATIONS
55	Crystal structure of human RIOK2 bound to a specific inhibitor. Open Biology, 2019, 9, 190037.	1.5	15
56	Chemical Probes for Understudied Kinases: Challenges and Opportunities. Journal of Medicinal Chemistry, 2022, 65, 1132-1170.	2.9	15
57	Synthesis of kinase inhibitors containing a pentafluorosulfanyl moiety. Organic and Biomolecular Chemistry, 2017, 15, 8655-8660.	1.5	14
58	Development of Pyridine-based Inhibitors for the Human Vaccinia-related Kinases 1 and 2. ACS Medicinal Chemistry Letters, 2019, 10, 1266-1271.	1.3	14
59	Development of 2-(4-pyridyl)-benzimidazoles as PKN2 chemical tools to probe cancer. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127040.	1.0	14
60	Structural Analysis of Inhibitor Binding to CAMKK1 Identifies Features Necessary for Design of Specific Inhibitors. Scientific Reports, 2018, 8, 14800.	1.6	13
61	Discovery and Characterization of Selective and Ligand-Efficient DYRK Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 11709-11728.	2.9	11
62	Solution structures and biophysical analysis of full-length group A PAKs reveal they are monomeric and auto-inhibited in <i>cis</i> . Biochemical Journal, 2019, 476, 1037-1051.	1.7	10
63	Mining Public Domain Data to Develop Selective DYRK1A Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 1620-1626.	1.3	10
64	Targeting the Water Network in Cyclin Gâ€Associated Kinase (GAK) with 4â€Anilinoâ€quin(az)oline Inhibitors. ChemMedChem, 2020, 15, 1200-1215.	1.6	9
65	Hoch funktionalisierte Terpyridine als kompetitive Inhibitoren von AKAPâ€PKAâ€Wechselwirkungen. Angewandte Chemie, 2013, 125, 12409-12413.	1.6	6
66	Discovery of a Potent Dual SLK/STK10 Inhibitor Based on a Maleimide Scaffold. Journal of Medicinal Chemistry, 2021, 64, 13259-13278.	2.9	6
67	Case Study—Structural Genomics and Human Protein Kinases. Methods in Molecular Biology, 2014, 1140, 325-336.	0.4	1
68	Development of dihydropyrrolopyridinone-based PKN2/PRK2 chemical tools to enable drug discovery. Bioorganic and Medicinal Chemistry Letters, 2022, 60, 128588.	1.0	1
69	The Structure of the Full-Length Tetrameric PKA Regulatory RIIÎ ² Complex Reveals the Mechanism of Allosteric PKA Activation. Science Signaling, 2012, 5, pe21.	1.6	0
70	A Transcription-uncoupled Negative Feedback Loop for the 1 WNT Pathway: WNT Activates the AAK1 Kinase to Promote Clathrin-mediated Endocytosis of LRP6. SSRN Electronic Journal, 0, , .	0.4	0