Zeljka Lucev Vasic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8549785/publications.pdf

Version: 2024-02-01

1040056 888059 38 321 9 17 citations g-index h-index papers 43 43 43 257 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrical Impedance Myography for Evaluating Muscle Fatigue Induced by Neuromuscular Electrical Stimulation. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6, 94-102.	3.4	2
2	EIM multi-frequency Measurement System Based on Virtual Instrument. , 2022, , .		0
3	Grip force prediction based on changes in Brachioradialis Muscle Impedance. , 2022, , .		1
4	Detection of low back muscle state based on electrical impedance myography., 2022,,.		1
5	Finite element modeling and experimental analysis of bladder volume body surface monitoring method. , 2022, , .		1
6	Integrated Intrabody Communication Node Based on OOK Modulation. IFMBE Proceedings, 2021, , 107-115.	0.3	0
7	A Leg Phantom Model Based on the Visible Human Data for Intra-Body Communication. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2021, 5, 313-321.	3.4	5
8	Electrical Impedance Myography Applied to Monitoring of Muscle Fatigue During Dynamic Contractions. IEEE Access, 2020, 8, 13056-13065.	4.2	14
9	Optimization of the electrode configuration of electrical impedance myography for wearable application. Automatika, 2020, 61, 475-481.	2.0	1
10	Preliminary Characterization of Capacitive Intrabody Communication Channel under Implantable-Like Conditions. , 2020, , .		1
11	A Differential Analog Receiver Front-End for Galvanic-Coupled Human Body Communication. , 2020, , .		1
12	Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges. Sensors, 2020, 20, 3587.	3.8	12
13	Design and Implementation of Galvanic Coupling Intra-Body Communication Transceivers using Differential Phase Shift Keying. , 2020, , .		1
14	Analysis of Electrical Impedance Myography Electrodes Configuration for Local Muscle Fatigue Evaluation Based on Finite Element Method. IEEE Access, 2020, 8, 172233-172243.	4.2	9
15	Design of Galvanic Coupling Intra-Body Communication Transceiver Using Direct Sequence Spread Spectrum Technology. IEEE Access, 2020, 8, 84123-84133.	4.2	14
16	An Investigation on Phase Characteristics of Galvanic Coupling Human Body Communication. IFMBE Proceedings, 2020, , 335-341.	0.3	1
17	Estimating the Ankle Angle Induced by FES via the Neural Network-Based Hammerstein Model. IEEE Access, 2019, 7, 141277-141286.	4.2	7
18	Corrigendum to "Biological Evaluation of the Effect of Galvanic Coupling Intrabody Communication on Human Skin Fibroblast Cells― Wireless Communications and Mobile Computing, 2018, 2018, 1-1.	1.2	0

#	Article	IF	Citations
19	Past Results, Present Trends, and Future Challenges in Intrabody Communication. Wireless Communications and Mobile Computing, 2018, 2018, 1-39.	1.2	41
20	Electrical exposure analysis of galvanic-coupled intra-body communication based on the empirical arm models. BioMedical Engineering OnLine, 2018, 17, 71.	2.7	8
21	Single-Chip Intrabody Communication Node. IFMBE Proceedings, 2017, , 305-310.	0.3	1
22	An intra-body communication research platform based on virtual instrument. , 2017, , .		0
23	Biological Evaluation of the Effect of Galvanic Coupling Intrabody Communication on Human Skin Fibroblast Cells. Wireless Communications and Mobile Computing, 2017, 2017, 1-8.	1.2	10
24	Investigation of implantable signal transmission characteristics based on visible data of the human leg. BioMedical Engineering OnLine, 2017, 16, 88.	2.7	9
25	A Novel Gait Detection Algorithm Based on Wireless Inertial Sensors. IFMBE Proceedings, 2017, , 300-304.	0.3	5
26	Effect of transformer symmetry on intrabody communication channel measurements using grounded instruments. Automatika, 2016, 57, 15-26.	2.0	9
27	Wireless intrabody communication sensor node realized using PSoC microcontroller. , 2016, , .		4
28	Human posture detection based on human body communication with muti-carriers modulation. , 2016, , .		8
29	Measurement of the Received Power in a Realistic Intrabody Communication Scenario. IFMBE Proceedings, 2015, , 924-927.	0.3	0
30	The Design and Experiment of the Leg Model Based on Galvanic Coupling Intra-Body Communication. Lecture Notes in Computer Science, 2015, , 306-313.	1.3	0
31	Channel Modeling and Simulation for Galvanic Coupling Intra-body Communication. IFMBE Proceedings, 2014, , 655-658.	0.3	1
32	On a pulse response of a capacitive intrabody communication channel. , 2013, , .		0
33	Effect of body positions and movements in a capacitive intrabody communication channel from 100 kHz to 100 MHz. , 2012, , .		7
34	A Capacitive Intrabody Communication Channel from 100 kHz to 100 MHz. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 3280-3289.	4.7	96
35	A capacitive intrabody communication channel from 100 kHz to 100 MHz. , 2011, , .		15
36	Application of wireless intrabody communication system to muscle fatigue monitoring. , 2010, , .		6

ZELJKA LUCEV VASIC

#	#	Article	IF	CITATIONS
5	37	Intrabody Communication in Biotelemetry. Lecture Notes in Electrical Engineering, 2010, , 351-368.	0.4	19
5	38	Multifunctional Configurable USB Data Acquisition System. , 2008, , .		1