
Nan Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8549311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Memorizing environmental signals through feedback and feedforward loops. Current Opinion in Cell Biology, 2021, 69, 96-102.	5.4	18
2	Advances in quantitative biology methods for studying replicative aging in Saccharomyces cerevisiae. Translational Medicine of Aging, 2020, 4, 151-160.	1.3	13
3	A programmable fate decision landscape underlies single-cell aging in yeast. Science, 2020, 369, 325-329.	12.6	77
4	A protein kinase A–regulated network encodes short- and long-lived cellular memories. Science Signaling, 2020, 13, .	3.6	14
5	Cell-cycle-gated feedback control mediates desensitization to interferon stimulation. ELife, 2020, 9, .	6.0	15
6	Quantitative analysis of the yeast pheromone pathway. Yeast, 2019, 36, 495-518.	1.7	18
7	Divergent Aging of Isogenic Yeast Cells Revealed through Single-Cell Phenotypic Dynamics. Cell Systems, 2019, 8, 242-253.e3.	6.2	43
8	Flavin-based metabolic cycles are integral features of growth and division in single yeast cells. Scientific Reports, 2018, 8, 18045.	3.3	17
9	High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response. Scientific Reports, 2017, 7, 42200.	3.3	16
10	Multigenerational silencing dynamics control cell aging. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11253-11258.	7.1	60
11	Coupled feedback loops control the stimulus-dependent dynamics of the yeast transcription factor Msn2. Journal of Biological Chemistry, 2017, 292, 12366-12372.	3.4	19
12	Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response. Journal of Biological Chemistry, 2017, 292, 20354-20361.	3.4	21
13	Reconstructing the regulatory circuit of cell fate determination in yeast mating response. PLoS Computational Biology, 2017, 13, e1005671.	3.2	5
14	Protein expression patterns of the yeast mating response. Integrative Biology (United Kingdom), 2016, 8, 712-719.	1.3	6
15	Dynamic control of gene regulatory logic by seemingly redundant transcription factors. ELife, 2016, 5, .	6.0	35
16	High-throughput microfluidics to control and measure signaling dynamics in single yeast cells. Nature Protocols, 2015, 10, 1181-1197.	12.0	84
17	Tunable Signal Processing Through Modular Control of Transcription Factor Translocation. Science, 2013, 339, 460-464.	12.6	132
18	Combined computational and experimental analysis reveals mitogen-activated protein kinase–mediated feedback phosphorylation as a mechanism for signaling specificity. Molecular Biology of the Cell, 2012, 23, 3899-3910.	2.1	17

Nan Hao

#	Article	lF	CITATIONS
19	Signal-dependent dynamics of transcription factor translocation controls gene expression. Nature Structural and Molecular Biology, 2012, 19, 31-39.	8.2	275
20	Regulation of Cell Signaling Dynamics by the Protein Kinase-Scaffold Ste5. Molecular Cell, 2008, 30, 649-656.	9.7	110
21	Control of MAPK Specificity by Feedback Phosphorylation of Shared Adaptor Protein Ste50. Journal of Biological Chemistry, 2008, 283, 33798-33802.	3.4	61
22	Dose-to-Duration Encoding and Signaling beyond Saturation in Intracellular Signaling Networks. PLoS Computational Biology, 2008, 4, e1000197.	3.2	56
23	Mathematical and Computational Analysis of Adaptation via Feedback Inhibition in Signal Transduction Pathways. Biophysical Journal, 2007, 93, 806-821.	0.5	107
24	Systems biology analysis of G protein and MAP kinase signaling in yeast. Oncogene, 2007, 26, 3254-3266.	5.9	35
25	A Systems-Biology Analysis of Feedback Inhibition in the Sho1 Osmotic-Stress-Response Pathway. Current Biology, 2007, 17, 659-667.	3.9	97
26	Modeling signal specificity by feedback inhibition. FASEB Journal, 2007, 21, A264.	0.5	0
27	Bistability, Stochasticity, and Oscillations in the Mitogen-Activated Protein Kinase Cascade. Biophysical Journal, 2006, 90, 1961-1978.	0.5	73
28	Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 330-346.	3.4	60
29	Mathematical Modeling of RGS and G-Protein Regulation in Yeast. Methods in Enzymology, 2004, 389, 383-398.	1.0	12
30	Regulators of G Protein Signaling and Transient Activation of Signaling. Journal of Biological Chemistry, 2003, 278, 46506-46515.	3.4	66