Shenxiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8549241/publications.pdf

Version: 2024-02-01

172386 206029 5,692 48 29 48 citations g-index h-index papers 49 49 49 5761 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Waterâ€inâ€Oil Emulsions with High Flux. Advanced Materials, 2013, 25, 2071-2076.	11.1	1,015
2	Nanowireâ€Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for Highâ€Efficiency Oil/Water Separation. Advanced Materials, 2013, 25, 4192-4198.	11.1	784
3	A Robust Polyionized Hydrogel with an Unprecedented Underwater Antiâ€Crudeâ€Oilâ€Adhesion Property. Advanced Materials, 2016, 28, 5307-5314.	11.1	346
4	Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance. Advanced Materials, 2016, 28, 3399-3405.	11.1	337
5	Cupric Phosphate Nanosheets-Wrapped Inorganic Membranes with Superhydrophilic and Outstanding Anticrude Oil-Fouling Property for Oil/Water Separation. ACS Nano, 2018, 12, 795-803.	7.3	317
6	Ultrafast permeation of water through protein-based membranes. Nature Nanotechnology, 2009, 4, 353-357.	15.6	312
7	Ultrathin Polyamide Nanofiltration Membrane Fabricated on Brush-Painted Single-Walled Carbon Nanotube Network Support for Ion Sieving. ACS Nano, 2019, 13, 5278-5290.	7.3	268
8	SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry A, 2015, 3, 6649-6654.	5.2	223
9	Tröger's Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. ACS Macro Letters, 2014, 3, 597-601.	2.3	170
10	An ultrathin bilayer membrane with asymmetric wettability for pressure responsive oil/water emulsion separation. Journal of Materials Chemistry A, 2015, 3, 23477-23482.	5.2	146
11	Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions. Journal of Materials Chemistry A, 2015, 3, 2895-2902.	5.2	140
12	Na ⁺ -gated water-conducting nanochannels for boosting CO ₂ conversion to liquid fuels. Science, 2020, 367, 667-671.	6.0	136
13	Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation. Macromolecules, 2014, 47, 7477-7483.	2.2	131
14	Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 10968-10977.	5.2	127
15	Tröger's base-based copolymers with intrinsic microporosity for CO ₂ separation and effect of Tröger's base on separation performance. Polymer Chemistry, 2014, 5, 2793-2800.	1.9	106
16	Multifunctional Bioâ€Nanocomposite Coatings for Perishable Fruits. Advanced Materials, 2020, 32, e1908291.	11.1	97
17	Hydrogel-embedded tight ultrafiltration membrane with superior anti-dye-fouling property for low-pressure driven molecule separation. Journal of Materials Chemistry A, 2018, 6, 2927-2934.	5. 2	80
18	Porous superstructures constructed from ultrafine FeP nanoparticles for highly active and exceptionally stable hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 6387-6392.	5.2	79

#	Article	IF	CITATIONS
19	MOF Nanosheet-Based Mixed Matrix Membranes with Metal–Organic Coordination Interfacial Interaction for Gas Separation. ACS Applied Materials & Interfaces, 2020, 12, 49101-49110.	4.0	78
20	Carbon Molecular Sieve Membranes Derived from Tröger's Baseâ€Based Microporous Polyimide for Gas Separation. ChemSusChem, 2018, 11, 916-923.	3.6	74
21	Microsphere-Fiber Interpenetrated Superhydrophobic PVDF Microporous Membranes with Improved Waterproof and Breathable Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28210-28218.	4.0	65
22	Metal–Organic Framework Composite Photothermal Membrane for Removal of High-Concentration Volatile Organic Compounds from Water via Molecular Sieving. ACS Nano, 2022, 16, 8329-8337.	7.3	58
23	Constructing Strong Interfacial Interactions under Mild Conditions in MOF-Incorporated Mixed Matrix Membranes for Gas Separation. ACS Applied Materials & Interfaces, 2021, 13, 3166-3174.	4.0	48
24	Rh nanoparticles supported on ultrathin carbon nanosheets for high-performance oxygen reduction reaction and catalytic hydrogenation. Nanoscale, 2017, 9, 1834-1839.	2.8	47
25	Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation. Separation and Purification Technology, 2021, 277, 119449.	3.9	47
26	Ultrafast Ion Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies. Nano Letters, 2020, 20, 5821-5829.	4.5	46
27	Ultralarge Single-Layer Porous Protein Nanosheet for Precise Nanosize Separation. Nano Letters, 2018, 18, 6563-6569.	4.5	44
28	Nanoporous film-mediated growth of ultrathin and continuous metal–organic framework membranes for high-performance hydrogen separation. Journal of Materials Chemistry A, 2017, 5, 1962-1966.	5.2	39
29	Effects on Carbon Molecular Sieve Membrane Properties for a Precursor Polyimide with Simultaneous Flatness and Contortion in the Repeat Unit. ChemSusChem, 2020, 13, 5531-5538.	3.6	34
30	Microporous polymer adsorptive membranes with high processing capacity for molecular separation. Nature Communications, 2022, 13, .	5.8	30
31	Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance. Separation and Purification Technology, 2020, 233, 116008.	3.9	27
32	Twoâ€Dimensional Microporous Materialâ€based Mixed Matrix Membranes for Gas Separation. Chemistry - an Asian Journal, 2020, 15, 2303-2315.	1.7	24
33	Metal ion cross-linked nanoporous polymeric membranes with improved organic solvent resistance for molecular separation. Journal of Membrane Science, 2021, 621, 119002.	4.1	24
34	Synergistic Design of Enhanced π–π Interaction and Decarboxylation Cross-Linking of Polyimide Membranes for Natural Gas Separation. Macromolecules, 2022, 55, 2970-2982.	2.2	24
35	Thin-film composite nanofiltration membrane with unprecedented stability in strong acid for highly selective dye/NaCl separation. Journal of Membrane Science, 2022, 645, 120189.	4.1	23
36	Mineralized growth of Janus membrane with asymmetric wetting property for fast separation of a trace of blood. Journal of Materials Chemistry B, 2017, 5, 4876-4882.	2.9	22

3

#	Article	IF	CITATIONS
37	A microporous polymer ultrathin membrane for the highly efficient removal of dyes from acidic saline solutions. Journal of Membrane Science, 2020, 603, 118027.	4.1	19
38	In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. Journal of Membrane Science, 2021, 630, 119302.	4.1	17
39	Negative Charge Confined Amine Carriers within the Nanowire Network for Stable and Efficient Membrane Carbon Capture. Advanced Functional Materials, 2020, 30, 2002804.	7.8	14
40	The high-yield direct synthesis of dimethyl ether from CO ₂ and H ₂ in a dry reaction environment. Journal of Materials Chemistry A, 2021, 9, 2678-2682.	5.2	14
41	Thin film composite structured Janus membrane for fast gravity-driven separation of a trace of blood. Journal of Membrane Science, 2021, 620, 118853.	4.1	14
42	Thermally Cross-Linked Amidoxime-Functionalized Polymers of Intrinsic Microporosity Membranes for Highly Selective Hydrogen Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 9426-9435.	3.2	14
43	Superhydrophilic Sub-1-nm Porous Membrane with Electroneutral Surface for Nonselective Transport of Small Organic Molecules. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38778-38787.	4.0	8
44	Polymer of intrinsic microporosity-based macroporous membrane with high thermal stability as a Li-ion battery separator. RSC Advances, 2019, 9, 21539-21543.	1.7	7
45	Micrometer-sized MOF particles incorporated mixed-matrix membranes driven by π-π interfacial interactions for improved gas separation. Separation and Purification Technology, 2022, , 121258.	3.9	7
46	Bioâ€Nanocomposite Coatings: Multifunctional Bioâ€Nanocomposite Coatings for Perishable Fruits (Adv.) Tj E7	ΓQq0.00 rş	gBT _g /Overlock
47	Ultrathin Microporous Metal-Organic Network Membranes for Molecular Separation. Journal of Materials Chemistry A, O, , .	5.2	3
48	Nanowire Oriented On-Surface Growth of Chiral Cystine Crystalline Nanosheets. Langmuir, 2015, 31, 8795-8801.	1.6	1