
David R Greaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8549038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NF-κB Signaling and Inflammation—Drug Repurposing to Treat Inflammatory Disorders?. Biology, 2022, 11, 372.	2.8	19
2	Bruton's TK regulates myeloid cell recruitment during acute inflammation. British Journal of Pharmacology, 2022, 179, 2754-2770.	5.4	10
3	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	2.5	55
4	20 Years an Orphan: Is GPR84 a Plausible Medium-Chain Fatty Acid-Sensing Receptor?. DNA and Cell Biology, 2020, 39, 1926-1937.	1.9	33
5	How Have Leukocyte In Vitro Chemotaxis Assays Shaped Our Ideas about Macrophage Migration?. Biology, 2020, 9, 439.	2.8	11
6	X-Linked Immunodeficient Mice With No Functional Bruton's Tyrosine Kinase Are Protected From Sepsis-Induced Multiple Organ Failure. Frontiers in Immunology, 2020, 11, 581758.	4.8	19
7	Inhibition of Bruton's TK regulates macrophage NFâ€̂₽B and NLRP3 inflammasome activation in metabolic inflammation. British Journal of Pharmacology, 2020, 177, 4416-4432.	5.4	51
8	Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications, 2020, 11, 600.	12.8	216
9	Single Cell Transcriptomics Reveals How Hyperlipidaemia Alters Monocyte/macrophage Differentiation At Sites Of Inflammation FASEB Journal, 2020, 34, 1-1.	0.5	0
10	A Biased Agonist at Immunometabolic Receptor GPR84 Causes Distinct Functional Effects in Macrophages. ACS Chemical Biology, 2019, 14, 2055-2064.	3.4	27
11	The Impact of Cannabinoid Receptor 2 Deficiency on Neutrophil Recruitment and Inflammation. DNA and Cell Biology, 2019, 38, 1025-1029.	1.9	10
12	Efferocytosis perpetuates substance accumulation inside macrophage populations. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190730.	2.6	8
13	Cannabinoid receptor 2 deficiency exacerbates inflammation and neutrophil recruitment. FASEB Journal, 2019, 33, 6154-6167.	0.5	41
14	Alveolar Macrophage Apoptosis–associated Bacterial Killing Helps Prevent Murine Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 84-97.	5.6	41
15	A model for the optimization of anti-inflammatory treatment with chemerin. Interface Focus, 2018, 8, 20170007.	3.0	12
16	The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxidants and Redox Signaling, 2018, 29, 237-256.	5.4	13
17	The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. Journal of Clinical Investigation, 2018, 128, 3402-3412.	8.2	180
18	Regulation of mycobacterial infection by macrophage Gch1 and tetrahydrobiopterin. Nature Communications, 2018, 9, 5409.	12.8	24

#	Article	IF	CITATIONS
19	In Vitro Migration Assays. Methods in Molecular Biology, 2018, 1784, 197-214.	0.9	4
20	Activation of the Immune-Metabolic Receptor GPR84 Enhances Inflammation and Phagocytosis in Macrophages. Frontiers in Immunology, 2018, 9, 1419.	4.8	110
21	The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nature Communications, 2017, 8, 15556.	12.8	51
22	Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 845-855.	5.6	70
23	Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE ^{â^'/â^'} Reporter Mouse—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 258-263.	2.4	22
24	Aâ€Endothelium-derived extracellular vesicles promote splenic monocyte mobilisation in myocardial infarction. Heart, 2017, 103, A150.1-A150.	2.9	0
25	Inflammation-a Critical Appreciation of the Role of Myeloid Cells. , 2017, , 325-342.		3
26	Absence of the Non-Signalling Chemerin Receptor CCRL2 Exacerbates Acute Inflammatory Responses In Vivo. Frontiers in Immunology, 2017, 8, 1621.	4.8	18
27	Cannabinoid Receptor 2 Modulates Neutrophil Recruitment in a Murine Model of Endotoxemia. Mediators of Inflammation, 2017, 2017, 1-15.	3.0	24
28	Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight, 2017, 2, .	5.0	75
29	163â€Endothelial Cell Derived Extracellular Vesicles Enriched with VCAM-1 in Inflammtion Stimulate Splenic Monocyte Migration. Heart, 2016, 102, A115.3-A116.	2.9	Ο
30	Inflammation—a Critical Appreciation of the Role of Myeloid Cells. Microbiology Spectrum, 2016, 4, .	3.0	14
31	Glucocorticoids Suppress CCR9-Mediated Chemotaxis, Calcium Flux, and Adhesion to MAdCAM-1 in Human T Cells. Journal of Immunology, 2016, 196, 3910-3919.	0.8	11
32	A novel real time imaging platform to quantify macrophage phagocytosis. Biochemical Pharmacology, 2016, 116, 107-119.	4.4	127
33	Loss of galectinâ€3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Clia, 2016, 64, 105-121.	4.9	29
34	Netrin-1 Reduces Monocyte and Macrophage Chemotaxis towards the Complement Component C5a. PLoS ONE, 2016, 11, e0160685.	2.5	13
35	Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo. ELife, 2016, 5, .	6.0	50
36	Abstract 575: Acute Exposure to Apolipoprotein Al Inhibits Macrophage and Macrophage Chemotaxis i <i>n vitro</i> and Recruitment i <i>n vivo</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0

#	Article	IF	CITATIONS
37	Hydrodynamic Gene Delivery of CC Chemokine Binding Fc Fusion Proteins to Target Acute Vascular Inflammation In Vivo. Scientific Reports, 2015, 5, 17404.	3.3	5
38	Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor. Scientific Reports, 2015, 5, 10682.	3.3	28
39	Ratiometric Analysis of Fura Red by Flow Cytometry: A Technique for Monitoring Intracellular Calcium Flux in Primary Cell Subsets. PLoS ONE, 2015, 10, e0119532.	2.5	29
40	RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling. Nature Communications, 2015, 6, 6614.	12.8	56
41	Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice. Atherosclerosis, 2015, 241, 69-78.	0.8	9
42	Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology and Medicine, 2015, 79, 206-216.	2.9	115
43	The PYRIN Domain-only Protein POP1 Inhibits Inflammasome Assembly and Ameliorates Inflammatory Disease. Immunity, 2015, 43, 264-276.	14.3	99
44	Ligand-based virtual screening identifies a family of selective cannabinoid receptor 2 agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 241-263.	3.0	21
45	YIA5â€RGS-1 Regulates Leukocyte Trafficking in Atherosclerosis and Aortic Aneurysm Formation through Chemokine Receptor Desensitisation. Heart, 2014, 100, A124.1-A124.	2.9	0
46	Contrasting in vitro vs. in vivo effects of a cell membrane-specific CC-chemokine binding protein on macrophage chemotaxis. Journal of Molecular Medicine, 2014, 92, 1169-1178.	3.9	5
47	Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2554-2562.	2.4	45
48	Polymorphism in the Innate Immune Receptor SIRPα Controls CD47 Binding and Autoimmunity in the Nonobese Diabetic Mouse. Journal of Immunology, 2014, 193, 4833-4844.	0.8	26
49	The PYRIN domain–only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nature Immunology, 2014, 15, 343-353.	14.5	136
50	Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood, 2014, 124, e33-e44.	1.4	83
51	Abstract 149: Regulator of G-Protein Signaling-1 Modulates Leukocyte Trafficking in Atherosclerosis and Aortic Aneurysm Formation Through Chemokine Receptor Desensitization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
52	Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: Implications for ovarian cancer therapy. Virology, 2013, 447, 74-83.	2.4	9
53	HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α–induced excessive erythropoiesis. Blood, 2013, 121, 1436-1445.	1.4	67
54	Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood, 2013, 121, e57-e69.	1.4	426

#	Article	IF	CITATIONS
55	Generation of a novel mouse model for the inducible depletion of macrophages in vivo. Genesis, 2013, 51, 41-49.	1.6	6
56	Tetrahydrobiopterin Determines Vascular Remodeling Through Enhanced Endothelial Cell Survival and Regeneration. Circulation, 2013, 128, S50-S58.	1.6	17
57	CC Chemokine Receptors and Chronic Inflammation—Therapeutic Opportunities and Pharmacological Challenges. Pharmacological Reviews, 2013, 65, 47-89.	16.0	225
58	A Real Time Chemotaxis Assay Unveils Unique Migratory Profiles amongst Different Primary Murine Macrophages. PLoS ONE, 2013, 8, e58744.	2.5	34
59	Anti-Inflammatory Effects of Nicotinic Acid in Human Monocytes Are Mediated by GPR109A Dependent Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 669-676.	2.4	169
60	Evaluation of macrophage-specific promoters using lentiviral delivery in mice. Gene Therapy, 2012, 19, 1041-1047.	4.5	20
61	Fractalkine: A Survivor's Guide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 589-594.	2.4	124
62	NF-κB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance. Nature Immunology, 2012, 13, 379-386.	14.5	102
63	Macrophage Differentiation and Function in Atherosclerosis: Opportunities for Therapeutic Intervention?. Journal of Innate Immunity, 2012, 4, 498-508.	3.8	46
64	Suppressor of cytokine signalling protein SOCS3 expression is increased at sites of acute and chronic inflammation. Journal of Molecular Histology, 2011, 42, 137-151.	2.2	54
65	TGFâ€Î² limits ILâ€33 production and promotes the resolution of colitis through regulation of macrophage function. European Journal of Immunology, 2011, 41, 2000-2009.	2.9	77
66	Generation of antiâ€inflammatory adenosine byleukocytes is regulated by TGFâ€Î². European Journal of Immunology, 2011, 41, 2955-2965.	2.9	148
67	Site-Directed Mutagenesis of the CC Chemokine Binding Protein 35K-Fc Reveals Residues Essential for Activity and Mutations That Increase the Potency of CC Chemokine Blockade. Molecular Pharmacology, 2011, 80, 328-336.	2.3	21
68	Suppressor of cytokine signalling (SOCS) 1 and 3 enhance cell adhesion and inhibit migration towards the chemokine eotaxin/CCL11. FEBS Letters, 2010, 584, 4469-4474.	2.8	12
69	Chemerin Peptides Promote Phagocytosis in a ChemR23- and Syk-Dependent Manner. Journal of Immunology, 2010, 184, 5315-5324.	0.8	58
70	Inflammatory cell recruitment in cardiovascular disease: murine models and potential clinical applications. Clinical Science, 2010, 118, 641-655.	4.3	44
71	Chemerin Contributes to Inflammation by Promoting Macrophage Adhesion to VCAM-1 and Fibronectin through Clustering of VLA-4 and VLA-5. Journal of Immunology, 2010, 185, 3728-3739.	0.8	144
72	Anti-inflammatory effects of nicotinic acid in adipocytes demonstrated by suppression of fractalkine, RANTES, and MCP-1 and upregulation of adiponectin. Atherosclerosis, 2010, 209, 89-95.	0.8	103

#	Article	IF	CITATIONS
73	Expression of a membrane associated CC-chemokine inhibitor protein reduces in vitro macrophage chemotaxis to CC chemokines. Atherosclerosis, 2010, 213, e8.	0.8	0
74	Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling. Cardiovascular Research, 2010, 85, 825-835.	3.8	102
75	PPARÎ ³ activation in adipocytes is sufficient for systemic insulin sensitization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22504-22509.	7.1	231
76	CCL11 blocks IL-4 and GM-CSF signaling in hematopoietic cells and hinders dendritic cell differentiation via suppressor of cytokine signaling expression. Journal of Leukocyte Biology, 2009, 85, 289-297.	3.3	29
77	The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. Journal of Lipid Research, 2009, 50, S282-S286.	4.2	179
78	c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene, 2009, 445, 66-72.	2.2	32
79	Vagus Nerve Activity Augments Intestinal Macrophage Phagocytosis via Nicotinic Acetylcholine Receptor α4β2. Gastroenterology, 2009, 137, 1029-1039.e4.	1.3	119
80	Chapter 17 Zymosanâ€Induced Peritonitis as a Simple Experimental System for the Study of Inflammation. Methods in Enzymology, 2009, 461, 379-396.	1.0	117
81	Overproduction of Acyloxyacyl Hydrolase by Macrophages and Dendritic Cells Prevents Prolonged Reactions to Bacterial Lipopolysaccharide In Vivo. Journal of Infectious Diseases, 2009, 200, 1685-1693.	4.0	28
82	Fractalkine: one chemokine, many functions. Blood, 2009, 113, 767-768.	1.4	27
83	Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. Journal of Clinical Investigation, 2009, 119, 531-539.	8.2	183
84	If I could set the medical research agenda for the next 10 years…. Foundation Years, 2008, 4, 172-174.	0.0	0
85	Synthetic chemerin-derived peptides suppress inflammation through ChemR23. Journal of Experimental Medicine, 2008, 205, 767-775.	8.5	317
86	Macrophage Secretory Phospholipase A2 Group X Enhances Anti-inflammatory Responses, Promotes Lipid Accumulation, and Contributes to Aberrant Lung Pathology. Journal of Biological Chemistry, 2008, 283, 21640-21648.	3.4	63
87	Immune modulation in gastrointestinal disorders: new opportunities for therapeutic peptides?. Expert Review of Gastroenterology and Hepatology, 2008, 2, 741-748.	3.0	2
88	CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury-Induced Accelerated Atherosclerosis. Circulation, 2008, 118, S71-7.	1.6	30
89	Magnetic Resonance Imaging of Endothelial Adhesion Molecules in Mouse Atherosclerosis Using Dual-Targeted Microparticles of Iron Oxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 77-83.	2.4	242
90	Distinct cell-specific control of autoimmunity and infection by FcÎ ³ RIIb. Journal of Experimental Medicine, 2008, 205, 883-895.	8.5	168

#	Article	IF	CITATIONS
91	The Duffy Antigen/Receptor for Chemokines Exists in an Oligomeric Form in Living Cells and Functionally Antagonizes CCR5 Signaling through Hetero-Oligomerization. Molecular Pharmacology, 2008, 73, 1362-1370.	2.3	79
92	Galectin-3 Is an Amplifier of Inflammation in Atherosclerotic Plaque Progression Through Macrophage Activation And Monocyte Chemoattraction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 433-440.	2.4	183
93	Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood, 2008, 112, 4699-4711.	1.4	110
94	Increased In-Stent Stenosis in ApoE Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 833-840.	2.4	65
95	Cell-type-specific expression of the human CD68 gene is associated with changes in Pol II phosphorylation and short-range intrachromosomal gene looping. Genomics, 2007, 90, 407-415.	2.9	44
96	Activation of the Cholinergic Anti-Inflammatory Pathway Ameliorates Postoperative lleus in Mice. Gastroenterology, 2007, 133, 1219-1228.	1.3	202
97	Monocyte recruitment in venous thrombus resolution. Journal of Vascular Surgery, 2006, 43, 601-608.	1.1	72
98	Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metabolism, 2006, 4, 13-24.	16.2	1,103
99	Oxidative metabolism and PGC- $1\hat{l}^2$ attenuate macrophage-mediated inflammation. Cell Metabolism, 2006, 4, 255.	16.2	32
100	Interleukin-4 induction of the CC chemokine TARC (CCL17) in murine macrophages is mediated by multiple STAT6 sites in the TARC gene promoter. BMC Molecular Biology, 2006, 7, 45.	3.0	50
101	Novel Candidate Genes in Unstable Areas of Human Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1837-1844.	2.4	163
102	MafB Is Essential for Renal Development and F4/80 Expression in Macrophages. Molecular and Cellular Biology, 2006, 26, 5715-5727.	2.3	189
103	Membrane-Bound CC Chemokine Inhibitor 35K Provides Localized Inhibition of CC Chemokine Activity In Vitro and In Vivo. Journal of Immunology, 2006, 177, 5567-5573.	0.8	18
104	Chemokines, Chemokine Receptors and Atherosclerosis. Current Topics in Membranes, 2005, , 223-253.	0.9	3
105	Urokinase plasminogen activator receptor promotes macrophage infiltration into the vascular wall of ApoE deficient mice. Journal of Cellular Physiology, 2005, 204, 73-82.	4.1	34
106	Thematic review series: The Immune System and Atherogenesis. Recent insights into the biology of macrophage scavenger receptors. Journal of Lipid Research, 2005, 46, 11-20.	4.2	181
107	ΔBAFF, a Splice Isoform of BAFF, Opposes Full-Length BAFF Activity In Vivo in Transgenic Mouse Models. Journal of Immunology, 2005, 175, 319-328.	0.8	97
108	A Novel Protein Derived from the MUC1 Gene by Alternative Splicing and Frameshifting. Journal of Biological Chemistry, 2005, 280, 10655-10663.	3.4	29

#	Article	IF	CITATIONS
109	Mechanisms of Disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nature Clinical Practice Cardiovascular Medicine, 2005, 2, 309-315.	3.3	127
110	Gene Transfer of a Broad Spectrum CC-Chemokine Inhibitor Reduces Vein Graft Atherosclerosis in Apolipoprotein E–Knockout Mice. Circulation, 2005, 112, I235-41.	1.6	35
111	Broad-Spectrum CC-Chemokine Blockade by Gene Transfer Inhibits Macrophage Recruitment and Atherosclerotic Plaque Formation in Apolipoprotein E–Knockout Mice. Circulation, 2004, 110, 2460-2466.	1.6	77
112	Functional analysis of the murine Emr1 promoter identifies a novel purine-rich regulatory motif required for high-level gene expression in macrophages. Genomics, 2004, 84, 1030-1040.	2.9	20
113	The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Current Opinion in Lipidology, 2004, 15, 145-149.	2.7	91
114	Adenovirus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor (SR-AI) in LDL receptor knock-out mice. Atherosclerosis, 2003, 169, 95-103.	0.8	38
115	Adenoviral-Mediated Delivery of a Viral Chemokine Binding Protein Blocks CC-chemokine Activity and. Immunobiology, 2003, 207, 187-196.	1.9	38
116	Smooth Muscle Cells in Human Atherosclerotic Plaques Express the Fractalkine Receptor CX 3 CR1 and Undergo Chemotaxis to the CX 3 C Chemokine Fractalkine (CX 3 CL1). Circulation, 2003, 108, 2498-2504.	1.6	137
117	Adeno-associated virus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor reduces atherosclerotic lesion formation in LDL receptor knockout mice. Molecular Therapy, 2003, 8, 903-910.	8.2	29
118	Multiple Ets Factors and Interferon Regulatory Factor-4 Modulate CD68 Expression in a Cell Type-specific Manner. Journal of Biological Chemistry, 2003, 278, 21909-21919.	3.4	49
119	Immunophenotyping of macrophages in human pulmonary tuberculosis and sarcoidosis. International Journal of Experimental Pathology, 2003, 84, 289-304.	1.3	40
120	Autocrine Deactivation of Macrophages in Transgenic Mice Constitutively Overexpressing IL-10 Under Control of the Human CD68 Promoter. Journal of Immunology, 2002, 168, 3402-3411.	0.8	149
121	Cloning and Characterization of Human Siglec-11. Journal of Biological Chemistry, 2002, 277, 24466-24474.	3.4	171
122	TH2 Cytokines and Allergic Challenge Induce Ym1 Expression in Macrophages by a STAT6-dependent Mechanism. Journal of Biological Chemistry, 2002, 277, 42821-42829.	3.4	208
123	Inflammation and immune responses in atherosclerosis. Trends in Immunology, 2002, 23, 535-541.	6.8	101
124	Macrophage-Specific Gene Expression: Current Paradigms and Future Challenges. International Journal of Hematology, 2002, 76, 6-15.	1.6	65
125	Rabbit atherosclerotic lesions express scavenger receptor AllI mRNA, a naturally occurring splice variant that encodes a non-functional, dominant negative form of the macrophage scavenger receptor. Atherosclerosis, 2001, 154, 415-419.	0.8	6
126	The Transmembrane Form of the CX3CL1 Chemokine Fractalkine Is Expressed Predominantly by Epithelial Cells in Vivo. American Journal of Pathology, 2001, 158, 855-866.	3.8	141

#	Article	IF	CITATIONS
127	Identification of Novel, Functional Genetic Variants in the Human Matrix Metalloproteinase-2 Gene. Journal of Biological Chemistry, 2001, 276, 7549-7558.	3.4	364
128	The use of human CD68 transcriptional regulatory sequences to direct high-level expression of class A scavenger receptor in macrophages in vitro and in vivo. Immunology, 2001, 103, 351-361.	4.4	84
129	Tumor Necrosis Factor-α-converting Enzyme (ADAM17) Mediates the Cleavage and Shedding of Fractalkine (CX3CL1). Journal of Biological Chemistry, 2001, 276, 37993-38001.	3.4	551
130	Atherosclerosis: role of chemokines and macrophages. Expert Reviews in Molecular Medicine, 2001, 3, 1-18.	3.9	52
131	Linked Chromosome 16q13 Chemokines, Macrophage-Derived Chemokine, Fractalkine, and Thymus- and Activation-Regulated Chemokine, Are Expressed in Human Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 923-929.	2.4	161
132	Chemokines and myeloid cell recruitment. Microbes and Infection, 2000, 2, 331-336.	1.9	29
133	Mechanism of Inactivation of NF-κB by a Viral Homologue of lκBα. Journal of Biological Chemistry, 2000, 275, 34656-34664.	3.4	77
134	Adenovirus-Mediated Gene Transfer of a Secreted Form of Human Macrophage Scavenger Receptor Inhibits Modified Low-Density Lipoprotein Degradation and Foam-Cell Formation in Macrophages. Circulation, 2000, 101, 1091-1096.	1.6	42
135	Analysis of Macrophage Scavenger Receptor (SR-A) Expression in Human Aortic Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 461-471.	2.4	125
136	The Human Eukaryotic Initiation Factor 4AI Gene (EIF4A1) Contains Multiple Regulatory Elements That Direct High-Level Reporter Gene Expression in Mammalian Cell Lines. Genomics, 1999, 62, 468-476.	2.9	18
137	Abduction of Chemokine Elements by Herpesviruses. Seminars in Virology, 1998, 8, 377-385.	3.9	29
138	Immunohistochemical Evidence for a Macrophage Scavenger Receptor in Mato Cells and Reactive Microglia of Ischemia and Alzheimer's Disease. Biochemical and Biophysical Research Communications, 1998, 245, 734-740.	2.1	47
139	The Human Interleukin 18 GenelL18Maps to 11q22.2–q22.3, Closely Linked to the DRD2 Gene Locus and Distinct from Mapped IDDM Loci. Genomics, 1998, 51, 161-163.	2.9	93
140	The Linked Human Elongation Initiation Factor 4A1 (EIF4A1) and CD68 Genes Map to Chromosome 17p13. Genomics, 1998, 53, 248-250.	2.9	12
141	Functional Comparison of the Murine Macrosialin and Human CD68 Promoters in Macrophage and Nonmacrophage Cell Lines. Genomics, 1998, 54, 165-168.	2.9	43
142	A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. Journal of Lipid Research, 1998, 39, 531-543.	4.2	96
143	Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Current Opinion in Lipidology, 1998, 9, 425-432.	2.7	96
144	CCR6, a CC Chemokine Receptor that Interacts with Macrophage Inflammatory Protein 3α and Is Highly Expressed in Human Dendritic Cells. Journal of Experimental Medicine, 1997, 186, 837-844.	8.5	342

#	Article	IF	CITATIONS
145	A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385, 640-644.	27.8	1,855
146	Immunology on the Internet Web alert. Current Opinion in Immunology, 1997, 9, 449-450.	5.5	0
147	The human lysozyme promoter directs reporter gene expression to activated myelomonocytic cells in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1434-1438.	7.1	40
148	Molecular immunobiology of macrophages: recent progress. Current Opinion in Immunology, 1995, 7, 24-33.	5.5	113
149	Tissue-specific targeting of gytokine unresponsiveness in transgenic mice. Immunity, 1995, 3, 657-666.	14.3	84
150	A transgenic mouse model of sickle cell disorder. Nature, 1990, 343, 183-185.	27.8	114
151	The β-Globin Dominant Control Region. , 1990, , 141-148.		0
152	A dominant control region from the human β-globin locus conferring integration site-independent gene expression. Nature, 1989, 338, 352-355.	27.8	362
153	Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell, 1989, 56, 979-986.	28.9	378
154	The β-globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell, 1989, 56, 969-977.	28.9	320
155	5′ Structural motifs and Xenopus β globin gene activation. Journal of Molecular Biology, 1988, 199, 575-585.	4.2	6
156	Programmed gene rearrangements altering gene expression. Science, 1987, 235, 658-667.	12.6	310
157	Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell, 1987, 51, 975-985.	28.9	2,025
158	Trypanosoma brucei variant-specific glycoprotein gene chromatin is sensitive to single-strand-specific endonuclease digestion. Journal of Molecular Biology, 1987, 197, 471-483.	4.2	28
159	RecBC,sbcB independent, (AT)n- mediated deletion of sequences flanking aXenopus laevis βglobin gene on propagation inE. coli. Nucleic Acids Research, 1986, 14, 4147-4158.	14.5	18
160	Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. Journal of Molecular Biology, 1985, 185, 461-478.	4.2	195
161	Heterogeneity and Functional Divergence of Ly6C ^{hi} Monocytes in Acute Inflammation Identifies a Requirement for Metabolic Reprogramming. SSRN Electronic Journal, 0, , .	0.4	0
162	Chemokines and Atherosclerosis: A Critical Assessment of Therapeutic Targets. , 0, , 21-42.		1

Chemokines and Atherosclerosis: A Critical Assessment of Therapeutic Targets. , 0, , 21-42. 162