David R Greaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8549038/publications.pdf

Version: 2024-02-01

162 papers 18,156 citations

15504 65 h-index 131 g-index

170 all docs

 $\begin{array}{c} 170 \\ \\ \text{docs citations} \end{array}$

170 times ranked

22278 citing authors

#	Article	IF	CITATIONS
1	Position-independent, high-level expression of the human \hat{l}^2 -globin gene in transgenic mice. Cell, 1987, 51, 975-985.	28.9	2,025
2	A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385, 640-644.	27.8	1,855
3	Oxidative metabolism and PGC- $\hat{\Pi}^2$ attenuate macrophage-mediated inflammation. Cell Metabolism, 2006, 4, 13-24.	16.2	1,103
4	Tumor Necrosis Factor-α-converting Enzyme (ADAM17) Mediates the Cleavage and Shedding of Fractalkine (CX3CL1). Journal of Biological Chemistry, 2001, 276, 37993-38001.	3.4	551
5	Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood, 2013, 121, e57-e69.	1.4	426
6	Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell, 1989, 56, 979-986.	28.9	378
7	Identification of Novel, Functional Genetic Variants in the Human Matrix Metalloproteinase-2 Gene. Journal of Biological Chemistry, 2001, 276, 7549-7558.	3.4	364
8	A dominant control region from the human \hat{l}^2 -globin locus conferring integration site-independent gene expression. Nature, 1989, 338, 352-355.	27.8	362
9	CCR6, a CC Chemokine Receptor that Interacts with Macrophage Inflammatory Protein 3α and Is Highly Expressed in Human Dendritic Cells. Journal of Experimental Medicine, 1997, 186, 837-844.	8.5	342
10	The \hat{l}^2 -globin dominant control region activates homologous and heterologous promoters in a tissue-specific manner. Cell, 1989, 56, 969-977.	28.9	320
11	Synthetic chemerin-derived peptides suppress inflammation through ChemR23. Journal of Experimental Medicine, 2008, 205, 767-775.	8.5	317
12	Programmed gene rearrangements altering gene expression. Science, 1987, 235, 658-667.	12.6	310
13	Magnetic Resonance Imaging of Endothelial Adhesion Molecules in Mouse Atherosclerosis Using Dual-Targeted Microparticles of Iron Oxide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 77-83.	2.4	242
14	PPAR \hat{I}^3 activation in adipocytes is sufficient for systemic insulin sensitization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22504-22509.	7.1	231
15	CC Chemokine Receptors and Chronic Inflammation—Therapeutic Opportunities and Pharmacological Challenges. Pharmacological Reviews, 2013, 65, 47-89.	16.0	225
16	Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications, 2020, 11, 600.	12.8	216
17	TH2 Cytokines and Allergic Challenge Induce Ym1 Expression in Macrophages by a STAT6-dependent Mechanism. Journal of Biological Chemistry, 2002, 277, 42821-42829.	3.4	208
18	Activation of the Cholinergic Anti-Inflammatory Pathway Ameliorates Postoperative Ileus in Mice. Gastroenterology, 2007, 133, 1219-1228.	1.3	202

#	Article	IF	CITATIONS
19	Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. Journal of Molecular Biology, 1985, 185, 461-478.	4.2	195
20	MafB Is Essential for Renal Development and F4/80 Expression in Macrophages. Molecular and Cellular Biology, 2006, 26, 5715-5727.	2.3	189
21	Galectin-3 Is an Amplifier of Inflammation in Atherosclerotic Plaque Progression Through Macrophage Activation And Monocyte Chemoattraction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 433-440.	2.4	183
22	Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. Journal of Clinical Investigation, 2009, 119, 531-539.	8.2	183
23	Thematic review series: The Immune System and Atherogenesis. Recent insights into the biology of macrophage scavenger receptors. Journal of Lipid Research, 2005, 46, 11-20.	4.2	181
24	The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. Journal of Clinical Investigation, 2018, 128, 3402-3412.	8.2	180
25	The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. Journal of Lipid Research, 2009, 50, S282-S286.	4.2	179
26	Cloning and Characterization of Human Siglec-11. Journal of Biological Chemistry, 2002, 277, 24466-24474.	3.4	171
27	Anti-Inflammatory Effects of Nicotinic Acid in Human Monocytes Are Mediated by GPR109A Dependent Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 669-676.	2.4	169
28	Distinct cell-specific control of autoimmunity and infection by Fcl³RIIb. Journal of Experimental Medicine, 2008, 205, 883-895.	8.5	168
29	Novel Candidate Genes in Unstable Areas of Human Atherosclerotic Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1837-1844.	2.4	163
30	Linked Chromosome 16q13 Chemokines, Macrophage-Derived Chemokine, Fractalkine, and Thymus- and Activation-Regulated Chemokine, Are Expressed in Human Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 923-929.	2.4	161
31	Autocrine Deactivation of Macrophages in Transgenic Mice Constitutively Overexpressing IL-10 Under Control of the Human CD68 Promoter. Journal of Immunology, 2002, 168, 3402-3411.	0.8	149
32	Generation of antiâ€inflammatory adenosine byleukocytes is regulated by TGFâ€Î². European Journal of Immunology, 2011, 41, 2955-2965.	2.9	148
33	Chemerin Contributes to Inflammation by Promoting Macrophage Adhesion to VCAM-1 and Fibronectin through Clustering of VLA-4 and VLA-5. Journal of Immunology, 2010, 185, 3728-3739.	0.8	144
34	The Transmembrane Form of the CX3CL1 Chemokine Fractalkine Is Expressed Predominantly by Epithelial Cells in Vivo. American Journal of Pathology, 2001, 158, 855-866.	3.8	141
35	Smooth Muscle Cells in Human Atherosclerotic Plaques Express the Fractalkine Receptor CX 3 CR1 and Undergo Chemotaxis to the CX 3 C Chemokine Fractalkine (CX 3 CL1). Circulation, 2003, 108, 2498-2504.	1.6	137
36	The PYRIN domain–only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nature Immunology, 2014, 15, 343-353.	14.5	136

3

#	Article	IF	Citations
37	Mechanisms of Disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nature Clinical Practice Cardiovascular Medicine, 2005, 2, 309-315.	3.3	127
38	A novel real time imaging platform to quantify macrophage phagocytosis. Biochemical Pharmacology, 2016, 116, 107-119.	4.4	127
39	Analysis of Macrophage Scavenger Receptor (SR-A) Expression in Human Aortic Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 461-471.	2.4	125
40	Fractalkine: A Survivor's Guide. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 589-594.	2.4	124
41	Vagus Nerve Activity Augments Intestinal Macrophage Phagocytosis via Nicotinic Acetylcholine Receptor α4Î ² 2. Gastroenterology, 2009, 137, 1029-1039.e4.	1.3	119
42	Chapter 17 Zymosanâ€Induced Peritonitis as a Simple Experimental System for the Study of Inflammation. Methods in Enzymology, 2009, 461, 379-396.	1.0	117
43	Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology and Medicine, 2015, 79, 206-216.	2.9	115
44	A transgenic mouse model of sickle cell disorder. Nature, 1990, 343, 183-185.	27.8	114
45	Molecular immunobiology of macrophages: recent progress. Current Opinion in Immunology, 1995, 7, 24-33.	5.5	113
46	Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood, 2008, 112, 4699-4711.	1.4	110
47	Activation of the Immune-Metabolic Receptor GPR84 Enhances Inflammation and Phagocytosis in Macrophages. Frontiers in Immunology, 2018, 9, 1419.	4.8	110
48	Anti-inflammatory effects of nicotinic acid in adipocytes demonstrated by suppression of fractalkine, RANTES, and MCP-1 and upregulation of adiponectin. Atherosclerosis, 2010, 209, 89-95.	0.8	103
49	Fractalkine has anti-apoptotic and proliferative effects on human vascular smooth muscle cells via epidermal growth factor receptor signalling. Cardiovascular Research, 2010, 85, 825-835.	3.8	102
50	NF-κB-mediated degradation of the coactivator RIP140 regulates inflammatory responses and contributes to endotoxin tolerance. Nature Immunology, 2012, 13, 379-386.	14.5	102
51	Inflammation and immune responses in atherosclerosis. Trends in Immunology, 2002, 23, 535-541.	6.8	101
52	The PYRIN Domain-only Protein POP1 Inhibits Inflammasome Assembly and Ameliorates Inflammatory Disease. Immunity, 2015, 43, 264-276.	14.3	99
53	î"BAFF, a Splice Isoform of BAFF, Opposes Full-Length BAFF Activity In Vivo in Transgenic Mouse Models. Journal of Immunology, 2005, 175, 319-328.	0.8	97
54	A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. Journal of Lipid Research, 1998, 39, 531-543.	4.2	96

#	Article	IF	CITATIONS
55	Recent progress in defining the role of scavenger receptors in lipid transport, atherosclerosis and host defence. Current Opinion in Lipidology, 1998, 9, 425-432.	2.7	96
56	The Human Interleukin 18 GenelL18Maps to 11q22.2–q22.3, Closely Linked to the DRD2 Gene Locus and Distinct from Mapped IDDM Loci. Genomics, 1998, 51, 161-163.	2.9	93
57	The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Current Opinion in Lipidology, 2004, 15, 145-149.	2.7	91
58	Tissue-specific targeting of gytokine unresponsiveness in transgenic mice. Immunity, 1995, 3, 657-666.	14.3	84
59	The use of human CD68 transcriptional regulatory sequences to direct high-level expression of class A scavenger receptor in macrophages in vitro and in vivo. Immunology, 2001, 103, 351-361.	4.4	84
60	Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood, 2014, 124, e33-e44.	1.4	83
61	The Duffy Antigen/Receptor for Chemokines Exists in an Oligomeric Form in Living Cells and Functionally Antagonizes CCR5 Signaling through Hetero-Oligomerization. Molecular Pharmacology, 2008, 73, 1362-1370.	2.3	79
62	Mechanism of Inactivation of NF-l ^o B by a Viral Homologue of Il ^o Bl ^o ±. Journal of Biological Chemistry, 2000, 275, 34656-34664.	3.4	77
63	Broad-Spectrum CC-Chemokine Blockade by Gene Transfer Inhibits Macrophage Recruitment and Atherosclerotic Plaque Formation in Apolipoprotein E–Knockout Mice. Circulation, 2004, 110, 2460-2466.	1.6	77
64	TGFâ $\hat{\in}^2$ limits ILâ $\hat{\in}3$ 3 production and promotes the resolution of colitis through regulation of macrophage function. European Journal of Immunology, 2011, 41, 2000-2009.	2.9	77
65	Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight, 2017, 2, .	5.0	75
66	Monocyte recruitment in venous thrombus resolution. Journal of Vascular Surgery, 2006, 43, 601-608.	1.1	72
67	Impaired Mitochondrial Microbicidal Responses in Chronic Obstructive Pulmonary Disease Macrophages. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 845-855.	5.6	70
68	HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α–induced excessive erythropoiesis. Blood, 2013, 121, 1436-1445.	1.4	67
69	Macrophage-Specific Gene Expression: Current Paradigms and Future Challenges. International Journal of Hematology, 2002, 76, 6-15.	1.6	65
70	Increased In-Stent Stenosis in ApoE Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 833-840.	2.4	65
71	Macrophage Secretory Phospholipase A2 Group X Enhances Anti-inflammatory Responses, Promotes Lipid Accumulation, and Contributes to Aberrant Lung Pathology. Journal of Biological Chemistry, 2008, 283, 21640-21648.	3.4	63
72	Chemerin Peptides Promote Phagocytosis in a ChemR23- and Syk-Dependent Manner. Journal of Immunology, 2010, 184, 5315-5324.	0.8	58

#	Article	IF	CITATIONS
73	RGS1 regulates myeloid cell accumulation in atherosclerosis and aortic aneurysm rupture through altered chemokine signalling. Nature Communications, 2015, 6, 6614.	12.8	56
74	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	2.5	55
75	Suppressor of cytokine signalling protein SOCS3 expression is increased at sites of acute and chronic inflammation. Journal of Molecular Histology, 2011, 42, 137-151.	2.2	54
76	Atherosclerosis: role of chemokines and macrophages. Expert Reviews in Molecular Medicine, 2001, 3, 1-18.	3.9	52
77	The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nature Communications, 2017, 8, 15556.	12.8	51
78	Inhibition of Bruton's TK regulates macrophage NFâ€₽B and NLRP3 inflammasome activation in metabolic inflammation. British Journal of Pharmacology, 2020, 177, 4416-4432.	5.4	51
79	Interleukin-4 induction of the CC chemokine TARC (CCL17) in murine macrophages is mediated by multiple STAT6 sites in the TARC gene promoter. BMC Molecular Biology, 2006, 7, 45.	3.0	50
80	Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo. ELife, $2016, 5, .$	6.0	50
81	Multiple Ets Factors and Interferon Regulatory Factor-4 Modulate CD68 Expression in a Cell Type-specific Manner. Journal of Biological Chemistry, 2003, 278, 21909-21919.	3.4	49
82	Immunohistochemical Evidence for a Macrophage Scavenger Receptor in Mato Cells and Reactive Microglia of Ischemia and Alzheimer's Disease. Biochemical and Biophysical Research Communications, 1998, 245, 734-740.	2.1	47
83	Macrophage Differentiation and Function in Atherosclerosis: Opportunities for Therapeutic Intervention?. Journal of Innate Immunity, 2012, 4, 498-508.	3.8	46
84	Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2554-2562.	2.4	45
85	Cell-type-specific expression of the human CD68 gene is associated with changes in Pol II phosphorylation and short-range intrachromosomal gene looping. Genomics, 2007, 90, 407-415.	2.9	44
86	Inflammatory cell recruitment in cardiovascular disease: murine models and potential clinical applications. Clinical Science, 2010, 118, 641-655.	4.3	44
87	Functional Comparison of the Murine Macrosialin and Human CD68 Promoters in Macrophage and Nonmacrophage Cell Lines. Genomics, 1998, 54, 165-168.	2.9	43
88	Adenovirus-Mediated Gene Transfer of a Secreted Form of Human Macrophage Scavenger Receptor Inhibits Modified Low-Density Lipoprotein Degradation and Foam-Cell Formation in Macrophages. Circulation, 2000, 101, 1091-1096.	1.6	42
89	Cannabinoid receptor 2 deficiency exacerbates inflammation and neutrophil recruitment. FASEB Journal, 2019, 33, 6154-6167.	0.5	41
90	Alveolar Macrophage Apoptosis–associated Bacterial Killing Helps Prevent Murine Pneumonia. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 84-97.	5.6	41

#	Article	IF	Citations
91	The human lysozyme promoter directs reporter gene expression to activated myelomonocytic cells in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1434-1438.	7.1	40
92	Immunophenotyping of macrophages in human pulmonary tuberculosis and sarcoidosis. International Journal of Experimental Pathology, 2003, 84, 289-304.	1.3	40
93	Adenovirus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor (SR-AI) in LDL receptor knock-out mice. Atherosclerosis, 2003, 169, 95-103.	0.8	38
94	Adenoviral-Mediated Delivery of a Viral Chemokine Binding Protein Blocks CC-chemokine Activity and. Immunobiology, 2003, 207, 187-196.	1.9	38
95	Gene Transfer of a Broad Spectrum CC-Chemokine Inhibitor Reduces Vein Graft Atherosclerosis in Apolipoprotein E–Knockout Mice. Circulation, 2005, 112, I235-41.	1.6	35
96	Urokinase plasminogen activator receptor promotes macrophage infiltration into the vascular wall of ApoE deficient mice. Journal of Cellular Physiology, 2005, 204, 73-82.	4.1	34
97	A Real Time Chemotaxis Assay Unveils Unique Migratory Profiles amongst Different Primary Murine Macrophages. PLoS ONE, 2013, 8, e58744.	2.5	34
98	20 Years an Orphan: Is GPR84 a Plausible Medium-Chain Fatty Acid-Sensing Receptor?. DNA and Cell Biology, 2020, 39, 1926-1937.	1.9	33
99	Oxidative metabolism and PGC- $1\hat{l}^2$ attenuate macrophage-mediated inflammation. Cell Metabolism, 2006, 4, 255.	16.2	32
100	c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene, 2009, 445, 66-72.	2.2	32
100	c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene, 2009, 445, 66-72. CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury-Induced Accelerated Atherosclerosis. Circulation, 2008, 118, S71-7.	2.2	32
	CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular		
101	CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury-Induced Accelerated Atherosclerosis. Circulation, 2008, 118, S71-7.	1.6	30
101	CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury-Induced Accelerated Atherosclerosis. Circulation, 2008, 118, S71-7. Abduction of Chemokine Elements by Herpesviruses. Seminars in Virology, 1998, 8, 377-385.	1.6 3.9	30
101 102 103	CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury-Induced Accelerated Atherosclerosis. Circulation, 2008, 118, S71-7. Abduction of Chemokine Elements by Herpesviruses. Seminars in Virology, 1998, 8, 377-385. Chemokines and myeloid cell recruitment. Microbes and Infection, 2000, 2, 331-336. Adeno-associated virus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor reduces atherosclerotic lesion formation in LDL receptor knockout mice. Molecular	1.6 3.9 1.9	30 29 29
101 102 103	CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury-Induced Accelerated Atherosclerosis. Circulation, 2008, 118, S71-7. Abduction of Chemokine Elements by Herpesviruses. Seminars in Virology, 1998, 8, 377-385. Chemokines and myeloid cell recruitment. Microbes and Infection, 2000, 2, 331-336. Adeno-associated virus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor reduces atherosclerotic lesion formation in LDL receptor knockout mice. Molecular Therapy, 2003, 8, 903-910. A Novel Protein Derived from the MUC1 Gene by Alternative Splicing and Frameshifting, Journal of	1.6 3.9 1.9 8.2	30 29 29 29
101 102 103 104	CCR2-Mediated Antiinflammatory Effects of Endothelial Tetrahydrobiopterin Inhibit Vascular Injury-Induced Accelerated Atherosclerosis. Circulation, 2008, 118, S71-7. Abduction of Chemokine Elements by Herpesviruses. Seminars in Virology, 1998, 8, 377-385. Chemokines and myeloid cell recruitment. Microbes and Infection, 2000, 2, 331-336. Adeno-associated virus-mediated gene transfer of a secreted decoy human macrophage scavenger receptor reduces atherosclerotic lesion formation in LDL receptor knockout mice. Molecular Therapy, 2003, 8, 903-910. A Novel Protein Derived from the MUC1 Gene by Alternative Splicing and Frameshifting. Journal of Biological Chemistry, 2005, 280, 10655-10663. CCL11 blocks IL-4 and GM-CSF signaling in hematopoietic cells and hinders dendritic cell differentiation via suppressor of cytokine signaling expression. Journal of Leukocyte Biology, 2009, 85,	1.6 3.9 1.9 8.2	30 29 29 29

#	Article	lF	CITATIONS
109	Trypanosoma brucei variant-specific glycoprotein gene chromatin is sensitive to single-strand-specific endonuclease digestion. Journal of Molecular Biology, 1987, 197, 471-483.	4.2	28
110	Overproduction of Acyloxyacyl Hydrolase by Macrophages and Dendritic Cells Prevents Prolonged Reactions to Bacterial Lipopolysaccharide In Vivo. Journal of Infectious Diseases, 2009, 200, 1685-1693.	4.0	28
111	Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor. Scientific Reports, 2015, 5, 10682.	3.3	28
112	Fractalkine: one chemokine, many functions. Blood, 2009, 113, 767-768.	1.4	27
113	A Biased Agonist at Immunometabolic Receptor GPR84 Causes Distinct Functional Effects in Macrophages. ACS Chemical Biology, 2019, 14, 2055-2064.	3.4	27
114	Polymorphism in the Innate Immune Receptor SIRPÎ \pm Controls CD47 Binding and Autoimmunity in the Nonobese Diabetic Mouse. Journal of Immunology, 2014, 193, 4833-4844.	0.8	26
115	Cannabinoid Receptor 2 Modulates Neutrophil Recruitment in a Murine Model of Endotoxemia. Mediators of Inflammation, 2017, 2017, 1-15.	3.0	24
116	Regulation of mycobacterial infection by macrophage Gch1 and tetrahydrobiopterin. Nature Communications, 2018, 9, 5409.	12.8	24
117	Tracking Monocyte Recruitment and Macrophage Accumulation in Atherosclerotic Plaque Progression Using a Novel hCD68GFP/ApoE ^{â~'/â~'} Reporter Mouseâ€"Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 258-263.	2.4	22
118	Site-Directed Mutagenesis of the CC Chemokine Binding Protein 35K-Fc Reveals Residues Essential for Activity and Mutations That Increase the Potency of CC Chemokine Blockade. Molecular Pharmacology, 2011, 80, 328-336.	2.3	21
119	Ligand-based virtual screening identifies a family of selective cannabinoid receptor 2 agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 241-263.	3.0	21
120	Functional analysis of the murine Emr1 promoter identifies a novel purine-rich regulatory motif required for high-level gene expression in macrophages. Genomics, 2004, 84, 1030-1040.	2.9	20
121	Evaluation of macrophage-specific promoters using lentiviral delivery in mice. Gene Therapy, 2012, 19, 1041-1047.	4.5	20
122	X-Linked Immunodeficient Mice With No Functional Bruton's Tyrosine Kinase Are Protected From Sepsis-Induced Multiple Organ Failure. Frontiers in Immunology, 2020, 11, 581758.	4.8	19
123	NF-κB Signaling and Inflammation—Drug Repurposing to Treat Inflammatory Disorders?. Biology, 2022, 11, 372.	2.8	19
124	RecBC, sbcB independent, (AT)n- mediated deletion of sequences flanking aXenopus laevis \hat{l}^2 globin gene on propagation in E. coli. Nucleic Acids Research, 1986, 14, 4147-4158.	14.5	18
125	The Human Eukaryotic Initiation Factor 4Al Gene (EIF4A1) Contains Multiple Regulatory Elements That Direct High-Level Reporter Gene Expression in Mammalian Cell Lines. Genomics, 1999, 62, 468-476.	2.9	18
126	Membrane-Bound CC Chemokine Inhibitor 35K Provides Localized Inhibition of CC Chemokine Activity In Vitro and In Vivo. Journal of Immunology, 2006, 177, 5567-5573.	0.8	18

#	Article	IF	CITATIONS
127	Absence of the Non-Signalling Chemerin Receptor CCRL2 Exacerbates Acute Inflammatory Responses In Vivo. Frontiers in Immunology, 2017, 8, 1621.	4.8	18
128	Tetrahydrobiopterin Determines Vascular Remodeling Through Enhanced Endothelial Cell Survival and Regeneration. Circulation, 2013, 128, S50-S58.	1.6	17
129	Inflammationâ€"a Critical Appreciation of the Role of Myeloid Cells. Microbiology Spectrum, 2016, 4, .	3.0	14
130	The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease. Antioxidants and Redox Signaling, 2018, 29, 237-256.	5.4	13
131	Netrin-1 Reduces Monocyte and Macrophage Chemotaxis towards the Complement Component C5a. PLoS ONE, 2016, 11, e0160685.	2.5	13
132	The Linked Human Elongation Initiation Factor 4A1 (EIF4A1) and CD68 Genes Map to Chromosome 17p13. Genomics, 1998, 53, 248-250.	2.9	12
133	Suppressor of cytokine signalling (SOCS) 1 and 3 enhance cell adhesion and inhibit migration towards the chemokine eotaxin/CCL11. FEBS Letters, 2010, 584, 4469-4474.	2.8	12
134	A model for the optimization of anti-inflammatory treatment with chemerin. Interface Focus, 2018, 8, 20170007.	3.0	12
135	Glucocorticoids Suppress CCR9-Mediated Chemotaxis, Calcium Flux, and Adhesion to MAdCAM-1 in Human T Cells. Journal of Immunology, 2016, 196, 3910-3919.	0.8	11
136	How Have Leukocyte In Vitro Chemotaxis Assays Shaped Our Ideas about Macrophage Migration?. Biology, 2020, 9, 439.	2.8	11
137	The Impact of Cannabinoid Receptor 2 Deficiency on Neutrophil Recruitment and Inflammation. DNA and Cell Biology, 2019, 38, 1025-1029.	1.9	10
138	Bruton's TK regulates myeloid cell recruitment during acute inflammation. British Journal of Pharmacology, 2022, 179, 2754-2770.	5.4	10
139	Adenovirus serotype 11 causes less long-term intraperitoneal inflammation than serotype 5: Implications for ovarian cancer therapy. Virology, 2013, 447, 74-83.	2.4	9
140	Glutaredoxin 2a overexpression in macrophages promotes mitochondrial dysfunction but has little or no effect on atherogenesis in LDL-receptor null mice. Atherosclerosis, 2015, 241, 69-78.	0.8	9
141	Efferocytosis perpetuates substance accumulation inside macrophage populations. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190730.	2.6	8
142	$5\hat{a}$ €² Structural motifs and Xenopus \hat{l}^2 globin gene activation. Journal of Molecular Biology, 1988, 199, 575-585.	4.2	6
143	Rabbit atherosclerotic lesions express scavenger receptor AIII mRNA, a naturally occurring splice variant that encodes a non-functional, dominant negative form of the macrophage scavenger receptor. Atherosclerosis, 2001, 154, 415-419.	0.8	6
144	Generation of a novel mouse model for the inducible depletion of macrophages in vivo. Genesis, 2013, 51, 41-49.	1.6	6

#	Article	IF	CITATIONS
145	Contrasting in vitro vs. in vivo effects of a cell membrane-specific CC-chemokine binding protein on macrophage chemotaxis. Journal of Molecular Medicine, 2014, 92, 1169-1178.	3.9	5
146	Hydrodynamic Gene Delivery of CC Chemokine Binding Fc Fusion Proteins to Target Acute Vascular Inflammation In Vivo. Scientific Reports, 2015, 5, 17404.	3.3	5
147	In Vitro Migration Assays. Methods in Molecular Biology, 2018, 1784, 197-214.	0.9	4
148	Chemokines, Chemokine Receptors and Atherosclerosis. Current Topics in Membranes, 2005, , 223-253.	0.9	3
149	Inflammation-a Critical Appreciation of the Role of Myeloid Cells. , 2017, , 325-342.		3
150	Immune modulation in gastrointestinal disorders: new opportunities for therapeutic peptides?. Expert Review of Gastroenterology and Hepatology, 2008, 2, 741-748.	3.0	2
151	Chemokines and Atherosclerosis: A Critical Assessment of Therapeutic Targets. , 0, , 21-42.		1
152	Immunology on the Internet Web alert. Current Opinion in Immunology, 1997, 9, 449-450.	5 . 5	0
153	If I could set the medical research agenda for the next 10 years…. Foundation Years, 2008, 4, 172-174.	0.0	0
154	Expression of a membrane associated CC-chemokine inhibitor protein reduces in vitro macrophage chemotaxis to CC chemokines. Atherosclerosis, 2010, 213, e8.	0.8	0
155	YIA5â€RGS-1 Regulates Leukocyte Trafficking in Atherosclerosis and Aortic Aneurysm Formation through Chemokine Receptor Desensitisation. Heart, 2014, 100, A124.1-A124.	2.9	0
156	163â€Endothelial Cell Derived Extracellular Vesicles Enriched with VCAM-1 in Inflammtion Stimulate Splenic Monocyte Migration. Heart, 2016, 102, A115.3-A116.	2.9	0
157	A Endothelium-derived extracellular vesicles promote splenic monocyte mobilisation in myocardial infarction. Heart, 2017, 103, A150.1-A150.	2.9	0
158	Heterogeneity and Functional Divergence of Ly6C ^{hi} Monocytes in Acute Inflammation Identifies a Requirement for Metabolic Reprogramming. SSRN Electronic Journal, 0, , .	0.4	0
159	The β-Globin Dominant Control Region. , 1990, , 141-148.		0
160	Abstract 149: Regulator of G-Protein Signaling-1 Modulates Leukocyte Trafficking in Atherosclerosis and Aortic Aneurysm Formation Through Chemokine Receptor Desensitization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
161	Abstract 575: Acute Exposure to Apolipoprotein Al Inhibits Macrophage and Macrophage Chemotaxis i <i>n vitro</i> and Recruitment i <i>n vivo</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
162	Single Cell Transcriptomics Reveals How Hyperlipidaemia Alters Monocyte/macrophage Differentiation At Sites Of Inflammation FASEB Journal, 2020, 34, 1-1.	0.5	0