Farzaneh Arabpour Roghabadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8548918/publications.pdf

Version: 2024-02-01

932766 839053 21 347 10 18 citations h-index g-index papers 21 21 21 572 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Stability progress of perovskite solar cells dependent on the crystalline structure: From 3D ABX ₃ to 2D Ruddlesden–Popper perovskite absorbers. Journal of Materials Chemistry A, 2019, 7, 5898-5933.	5.2	102
2	Bulk heterojunction polymer solar cell and perovskite solar cell: Concepts, materials, current status, and opto-electronic properties. Solar Energy, 2018, 173, 407-424.	2.9	56
3	Prolonged Lifetime of Perovskite Solar Cells Using a Moisture-Blocked and Temperature-Controlled Encapsulation System Comprising a Phase Change Material as a Cooling Agent. ACS Omega, 2020, 5, 7106-7114.	1.6	29
4	High Power UV-Light Irradiation as a New Method for Defect Passivation in Degraded Perovskite Solar Cells to Recover and Enhance the Performance. Scientific Reports, 2019, 9, 9448.	1.6	21
5	Materials and structures engineering of sun-light absorbers for efficient direct solar steam generation. Solar Energy, 2021, 225, 747-772.	2.9	18
6	Organic–Inorganic Halide Perovskite Formation: In Situ Dissociation of Cation Halide and Metal Halide Complexes during Crystal Formation. Journal of Physical Chemistry C, 2017, 121, 13532-13538.	1.5	16
7	Stability improvement of perovskite solar cell using photoswitchable and moisture resistant dual-function interfacial layer. Journal of Alloys and Compounds, 2022, 903, 163891.	2.8	14
8	Facile synthesis of durable perovskite quantum dots film with near unity photoluminescence quantum yield for efficient perovskite light emitting diode. Applied Surface Science, 2020, 510, 145513.	3.1	13
9	Interfacial defect passivation in CH3NH3Pbl3 perovskite solar cells using modifying of hole transport layer. Journal of Materials Science: Materials in Electronics, 2019, 30, 6936-6946.	1.1	12
10	High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS Applied Materials & Interfaces, 2020, 12, 11428-11437.	4.0	11
11	Highly Efficient Solar Steam Generators Based on Multicore@Shell Nanostructured Aerogels of Carbon and Silica as the Light Absorberâ~Heat Insulator. Solar Rrl, 2021, 5, 2100048.	3.1	11
12	Durable Perovskite UV Sensor Based on Engineered Size-Tunable Polydimethylsiloxane Microparticles Using a Facile Capillary Microfluidic Device from a High-Viscosity Precursor. ACS Omega, 2020, 5, 1052-1061.	1.6	8
13	Stability improvement of MAPbI3-based perovskite solar cells using a photoactive solid-solid phase change material. Journal of Alloys and Compounds, 2022, 897, 163142.	2.8	8
14	Enhancing Lifetime and Efficiency of Organic Solar Cell by Applying an In Situ Synthesized Lowâ€Crystalline ZnO Layer. ChemSusChem, 2017, 10, 2352-2359.	3.6	7
15	Charge transfer balancing of planar perovskite solar cell based on a low cost and facile solution-processed CuOx as an efficient hole transporting layer. Journal of Materials Science: Materials in Electronics, 2021, 32, 2312-2325.	1.1	7
16	Enhancing the efficiency and stability of perovskite solar cells based on moisture-resistant dopant free hole transport materials by using a 2D-BA ₂ PbI ₄ interfacial layer. Physical Chemistry Chemical Physics, 2022, 24, 1675-1684.	1.3	5
17	Organic-Inorganic Hybrid Perovskite as an Efficient Light Convertor for Visible Light Communication. , 2019, , .		3
18	Internal Referencing Photoluminescence Probes for Simultaneous Sensing of O ₂ Gas and Temperature Based on Mn:MAPb(Br/Cl) ₃ Perovskite. Advanced Photonics Research, 2022, 3, .	1.7	3

FARZANEH ARABPOUR

#	Article	IF	CITATIONS
19	The Future of Hybrid and Inorganic Perovskite Materials: Technology Forecasting. Energy Technology, 2021, 9, 2100376.	1.8	2
20	Efficient LED Light Converter based on Perovskite Nanocrystals for Visible Light Communication. , 2020, , .		1
21	Chemorheological behavior of \hat{l}^2 -SiAlON aqueous suspensions in gelcasting process. Polymer Engineering and Science, 2013, 53, n/a-n/a.	1.5	O