Sang-Kee Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/854848/publications.pdf

Version: 2024-02-01

		1684188	1372567	
11	372	5	10	
papers	citations	h-index	g-index	
11	11	11	437	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development (Cambridge), 2006, 133, 4691-4698.	2.5	132
2	Key Divisions in the Early Arabidopsis Embryo Require POL and PLL1 Phosphatases to Establish the Root Stem Cell Organizer and Vascular Axis. Developmental Cell, 2008, 15, 98-109.	7.0	92
3	POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Developmental Biology, 2005, 285, 272-284.	2.0	89
4	TORNADO1 regulates root epidermal patterning through the <i>WEREWOLF </i> pathway in <i>Arabidopsis thaliana </i> Plant Signaling and Behavior, 2015, 10, e1103407.	2.4	23
5	POLTERGEIST and POLTERGEIST-LIKE1 are essential for the maintenance of post-embryonic shoot and root apical meristems as revealed by a partial loss-of-function mutant allele of pll1 in Arabidopsis. Genes and Genomics, 2020, 42, 107-116.	1.4	9
6	Misexpression of AtTX12 encoding a Toll/interleukin-1 receptor domain induces growth defects and expression of defense-related genes partially independently of EDS1 in Arabidopsis. BMB Reports, 2016, 49, 693-698.	2.4	7
7	Overexpression of three related root-cap outermost-cell-specific C2H2-type zinc-finger protein genes suppresses the growth of Arabidopsis in an EAR-motif-dependent manner. BMB Reports, 2020, 53, 160-165.	2.4	7
8	ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2015, 465, 587-593.	2.1	5
9	WEREWOLF and ENHANCER of GLABRA3 are interdependent regulators of the spatial expression pattern of GLABRA2 in Arabidopsis. Biochemical and Biophysical Research Communications, 2015, 467, 94-100.	2.1	4
10	Defective Quiescent Center/AtTRS85 Encoding a TRAPPIII-specific Subunit Required for the Trans-golgi Network/Early Endosome Integrity is Essential for the Proper Root Development in Arabidopsis. Journal of Plant Biology, 2020, 63, 23-31.	2.1	2
11	SHOOT MERISTEMLESS is Required for the Proper Internode Patterning and the Sepal Separation in Arabidopsis. Journal of Plant Biology, 2020, 63, 33-42.	2.1	2