Andres Bustillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8548467/publications.pdf

Version: 2024-02-01

236925 233421 2,163 63 25 45 citations h-index g-index papers 67 67 67 1928 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review of immersive virtual reality serious games to enhance learning and training. Multimedia Tools and Applications, 2020, 79, 5501-5527.	3.9	314
2	An SVM-Based Solution for Fault Detection in Wind Turbines. Sensors, 2015, 15, 5627-5648.	3.8	167
3	Predicting tool life in turning operations using neural networks and image processing. Mechanical Systems and Signal Processing, 2018, 104, 503-513.	8.0	157
4	Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 2018, 29, 1045-1061.	7.3	139
5	Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review. Journal of Intelligent Manufacturing, 2023, 34, 2079-2121.	7.3	90
6	Using artificial neural networks for the prediction of dimensional error on inclined surfaces manufactured by ball-end milling. International Journal of Advanced Manufacturing Technology, 2016, 83, 847-859.	3.0	84
7	Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process. Journal of Intelligent Manufacturing, 2012, 23, 869-882.	7.3	76
8	Smart optimization of a friction-drilling process based on boosting ensembles. Journal of Manufacturing Systems, 2018, 48, 108-121.	13.9	70
9	Effect of the Relative Position of the Face Milling Tool towards the Workpiece on Machined Surface Roughness and Milling Dynamics. Applied Sciences (Switzerland), 2019, 9, 842.	2.5	62
10	Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robotics and Computer-Integrated Manufacturing, 2018, 53, 215-227.	9.9	61
11	Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. Journal of Intelligent Manufacturing, 2015, 26, 801-814.	7.3	59
12	Advantages and limits of virtual reality in learning processes: Briviesca in the fifteenth century. Virtual Reality, 2020, 24, 151-161.	6.1	59
13	Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. Journal of Intelligent Manufacturing, 2021, 32, 895-912.	7.3	58
14	Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. Journal of Intelligent Manufacturing, 2018, 29, 333-351.	7.3	50
15	Using artificial intelligence to predict surface roughness in deep drilling of steel components. Journal of Intelligent Manufacturing, 2012, 23, 1893-1902.	7.3	40
16	A machine-learning based solution for chatter prediction in heavy-duty milling machines. Measurement: Journal of the International Measurement Confederation, 2018, 128, 34-44.	5.0	40
17	Improving the accuracy of machine-learning models with data from machine test repetitions. Journal of Intelligent Manufacturing, 2022, 33, 203-221.	7.3	40
18	A flexible platform for the creation of 3D semi-immersive environments to teach Cultural Heritage. Digital Applications in Archaeology and Cultural Heritage, 2015, 2, 248-259.	1.3	39

#	Article	IF	Citations
19	Avoiding neural network fine tuning by using ensemble learning: application to ball-end milling operations. International Journal of Advanced Manufacturing Technology, 2011, 57, 521-532.	3.0	36
20	Immersive virtual-reality computer-assembly serious game to enhance autonomous learning. Virtual Reality, 2023, 27, 3301-3318.	6.1	35
21	The evolutionary development of roughness prediction models. Applied Soft Computing Journal, 2013, 13, 2913-2922.	7.2	29
22	Prediction, monitoring and control of surface roughness in high-torque milling machine operations. International Journal of Computer Integrated Manufacturing, 2012, 25, 1129-1138.	4.6	28
23	A regression-tree multilayer-perceptron hybrid strategy for the prediction of ore crushing-plate lifetimes. Journal of Advanced Research, 2019, 18, 173-184.	9.5	26
24	Modelling of process parameters in laser polishing of steel components using ensembles of regression trees. International Journal of Computer Integrated Manufacturing, 2011, 24, 735-747.	4.6	25
25	A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. Journal of Intelligent Manufacturing, 2012, 23, 1733-1743.	7.3	25
26	Online breakage detection of multitooth tools using classifier ensembles for imbalanced data. International Journal of Systems Science, 2014, 45, 2590-2602.	5. 5	25
27	Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components. Journal of Computational Design and Engineering, 2016, 3, 337-348.	3.1	23
28	Semi-supervised roughness prediction with partly unlabeled vibration data streams. Journal of Intelligent Manufacturing, 2019, 30, 933-945.	7.3	22
29	Use of machine learning algorithms for surface roughness prediction of printed parts in polyvinyl butyral via fused deposition modeling. International Journal of Advanced Manufacturing Technology, 2021, 115, 2465-2475.	3.0	21
30	Improvement of surface roughness models for face milling operations through dimensionality reduction. Integrated Computer-Aided Engineering, 2012, 19, 179-197.	4.6	20
31	A Virtual Sensor for Online Fault Detection of Multitooth-Tools. Sensors, 2011, 11, 2773-2795.	3.8	18
32	A new approach for machine's management: from machine's signal acquisition to energy indexes. Journal of Cleaner Production, 2016, 137, 1503-1515.	9.3	18
33	A Framework for Educational and Training Immersive Virtual Reality Experiences. Lecture Notes in Computer Science, 2020, , 220-228.	1.3	18
34	Awareness, Prevention, Detection, and Therapy Applications for Depression and Anxiety in Serious Games for Children and Adolescents: Systematic Review. JMIR Serious Games, 2021, 9, e30482.	3.1	17
35	Interpreting tree-based prediction models and their data in machining processes. Integrated Computer-Aided Engineering, 2016, 23, 349-367.	4.6	16
36	A decision-making tool based on decision trees for roughness prediction in face milling. International Journal of Computer Integrated Manufacturing, 2017, 30, 943-957.	4.6	16

#	Article	IF	Citations
37	New methodology for the design of ultra-light structural components for machine tools. International Journal of Computer Integrated Manufacturing, 2015, 28, 339-352.	4.6	14
38	Random Forest ensemble prediction of stent dimensions in microfabrication processes. International Journal of Advanced Manufacturing Technology, 2017, 91, 879-893.	3.0	14
39	Virtual Reality Training Application for the Condition-Based Maintenance of Induction Motors. Applied Sciences (Switzerland), 2022, 12, 414.	2.5	13
40	Sensitivity Analysis of Tool Wear in Drilling of Titanium Aluminides. Metals, 2019, 9, 297.	2.3	12
41	Selection of machining parameters with Android application made using MIT App Inventor bookmarks. Procedia Manufacturing, 2018, 22, 172-179.	1.9	8
42	Briviesca in the 15th c.: A Virtual Reality Environment for Teaching Purposes. Lecture Notes in Computer Science, 2016, , 126-138.	1.3	8
43	Wind Turbines Fault Diagnosis Using Ensemble Classifiers. Lecture Notes in Computer Science, 2012, , 67-76.	1.3	7
44	New strategy for the optimal design and manufacture of high performance milling heads. Revista De Metalurgia, 2011, 47, 426-476.	0.5	7
45	Using Machine-Learning techniques and Virtual Reality to design cutting tools for energy optimization in milling operations. International Journal of Computer Integrated Manufacturing, 2022, 35, 951-971.	4.6	7
46	Boosting Projections to improve surface roughness prediction in high-torque milling operations. Soft Computing, 2012, 16, 1427-1437.	3.6	5
47	High-accuracy classification of thread quality in tapping processes with ensembles of classifiers for imbalanced learning. Measurement: Journal of the International Measurement Confederation, 2021, 168, 108328.	5.0	5
48	Industrial Heritage Seen Through the Lens of a Virtual Reality Experience. Lecture Notes in Computer Science, 2017 , , 116 - 130 .	1.3	5
49	VIRTUAL REALITY OPPORTUNITIES IN THE REDUCTION OF OCCUPATIONAL HAZARDS IN INDUSTRY 4.0. Dyna (Spain), 2021, 96, 620-626.	0.2	5
50	Measuring the Impact of Low-Cost Short-Term Virtual Reality on the User Experience. Lecture Notes in Computer Science, 2017, , 320-336.	1.3	4
51	AI for Modelling the Laser Milling of Copper Components. Lecture Notes in Computer Science, 2008, , 498-507.	1.3	4
52	Virtual Reality Travel Training Simulator for People with Intellectual Disabilities. Lecture Notes in Computer Science, 2019, , 385-393.	1.3	3
53	Networked Control Based on Fuzzy Logic. An Application to a High-Performance Milling Process. Lecture Notes in Computer Science, 2007, , 391-398.	1.3	3
54	A Soft Computing System to Perform Face Milling Operations. Lecture Notes in Computer Science, 2009, , 1282-1291.	1.3	3

#	Article	IF	Citations
55	Development of pulsed UV lasers and their application in laser spectroscopy. Journal of Physics: Conference Series, 2011, 274, 012088.	0.4	1
56	Towards higher machine-tool eco-efficiency with an Information Sharing Platform. , 2013, , .		1
57	Using a Short Video Animation to Assist with the Diagnosis of Sleep Disorders in Young Children. Lecture Notes in Computer Science, 2016, , 13-29.	1.3	1
58	MACHINING OPTIMIZATION OF LARGE CASTING COMPONENTS BY REMOTE MONITORING AND 3D VISUALIZATION TECHNIQUES. Dyna (Spain), 2018, 93, 668-674.	0.2	1
59	Considering User Experience Parameters in the Evaluation of VR Serious Games. Lecture Notes in Computer Science, 2020, , 186-193.	1.3	1
60	Conventional Methods and AI models for Solving an Industrial an Industrial Problem. , 2008, , .		0
61	A Soft Computing System for Modelling the Manufacture of Steel Components. , 2010, , 127-142.		0
62	Improvements in Modelling of Complex Manufacturing Processes Using Classification Techniques. Lecture Notes in Computer Science, 2013, , 664-673.	1.3	0
63	Virtual reality-based tool applied in the teaching and training of condition-based maintenance in induction motors. , 2021, , .		0