Nemat O Keyhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8548365/publications.pdf Version: 2024-02-01

109 papers	5,984 citations	71102 41 h-index	76900 74 g-index
111	111	111	3918
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Influence of selenium on the mycelia of the shaggy bracket fungus, <scp><i>Inonotus hispidus</i></scp> . Journal of the Science of Food and Agriculture, 2022, 102, 3762-3770.	3.5	8
2	Contributions of a Histone Deacetylase (SirT2/Hst2) to Beauveria bassiana Growth, Development, and Virulence. Journal of Fungi (Basel, Switzerland), 2022, 8, 236.	3.5	3
3	Mutation of a prenyltransferase results in accumulation of subglutinols and destruxins and enhanced virulence in the insect pathogen, <i>Metarhizium anisopliae</i> . Environmental Microbiology, 2022, 24, 1362-1379.	3.8	2
4	A Perilipin Affects Lipid Droplet Homeostasis and Aerial Hyphal Growth, but Has Only Small Effects on Virulence in the Insect Pathogenic Fungus Beauveria bassiana. Journal of Fungi (Basel, Switzerland), 2022, 8, 634.	3.5	3
5	Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. Journal of Proteomics, 2021, 232, 104050.	2.4	7
6	Sustainable control of the rice pest, <scp><i>Nilaparvata lugens</i></scp> , using the entomopathogenic fungus <i>Isaria javanica</i> . Pest Management Science, 2021, 77, 1452-1464.	3.4	7
7	Long-term field evaluation and large-scale application of a Metarhizium anisopliae strain for controlling major rice pests. Journal of Pest Science, 2021, 94, 969-980.	3.7	19
8	Altered Expression of Chemosensory and Odorant Binding Proteins in Response to Fungal Infection in the Red Imported Fire Ant, Solenopsis invicta. Frontiers in Physiology, 2021, 12, 596571.	2.8	8
9	Manipulation of host ecdysteroid hormone levels facilitates infection by the fungal insect pathogen, Metarhizium rileyi. Environmental Microbiology, 2021, 23, 5087-5101.	3.8	4
10	Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling. Pathogens, 2021, 10, 528.	2.8	6
11	Fungal mutualisms and pathosystems: life and death in the ambrosia beetle mycangia. Applied Microbiology and Biotechnology, 2021, 105, 3393-3410.	3.6	21
12	The Msn2 Transcription Factor Regulates Acaricidal Virulence in the Fungal Pathogen Beauveria bassiana. Frontiers in Cellular and Infection Microbiology, 2021, 11, 690731.	3.9	5
13	A fungal sirtuin modulates development and virulence in the insect pathogen, <i>Beauveria bassiana</i> . Environmental Microbiology, 2021, 23, 5164-5183.	3.8	12
14	Infection of the Western Flower Thrips, Frankliniella occidentalis, by the Insect Pathogenic Fungus Beauveria bassiana. Agronomy, 2021, 11, 1910.	3.0	2
15	The Spt10 GNAT Superfamily Protein Modulates Development, Cell Cycle Progression and Virulence in the Fungal Insect Pathogen, Beauveria bassiana. Journal of Fungi (Basel, Switzerland), 2021, 7, 905.	3.5	6
16	Disruption of an adenylateâ€forming reductase required for conidiation, increases virulence of the insect pathogenic fungusMetarhizium acridumby enhancing cuticle invasion. Pest Management Science, 2020, 76, 758-768.	3.4	10
17	Hostâ€dependent contributions of the <i>Cfcdp1</i> protease gene to virulence in the entomopathogenic fungus <i>Cordyceps fumosorosea</i> . Pest Management Science, 2020, 76, 575-588.	3.4	9
18	Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage. Developmental and Comparative Immunology, 2020, 104, 103524.	2.3	15

Nemat O Keyhani

#	Article	IF	CITATIONS
19	The fungal mitochondrial membrane protein, BbOhmm, antagonistically controls hypoxia tolerance. Environmental Microbiology, 2020, 22, 2514-2535.	3.8	10
20	Inhibitor of apoptosisâ€1 gene as a potential target for pest control and its involvement in immune regulation during fungal infection. Pest Management Science, 2020, 76, 1831-1840.	3.4	11
21	High efficiency transformation and mutant screening of the laurel wilt pathogen, Raffaelea lauricola. Applied Microbiology and Biotechnology, 2020, 104, 7331-7343.	3.6	7
22	Attach Me If You Can: Murine Norovirus Binds to Commensal Bacteria and Fungi. Viruses, 2020, 12, 759.	3.3	20
23	Red Imported Fire Ant (Solenopsis invicta) Chemosensory Proteins Are Expressed in Tissue, Developmental, and Caste-Specific Patterns. Frontiers in Physiology, 2020, 11, 585883.	2.8	8
24	Sex-specific variation in the antennal proteome of the migratory locust. Journal of Proteomics, 2020, 216, 103681.	2.4	6
25	Characterization of a fungal competition factor: Production of a conidial cell-wall associated antifungal peptide. PLoS Pathogens, 2020, 16, e1008518.	4.7	35
26	Comparative transcriptome and histomorphology analysis of testis tissues from mulard and Pekin ducks. Archives Animal Breeding, 2020, 63, 303-313.	1.4	4
27	Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathogens, 2019, 15, e1007964.	4.7	47
28	The Thm1 Zn(II) ₂ Cys ₆ transcription factor contributes to heat, membrane integrity and virulence in the insect pathogenic fungus <i>Beauveria bassiana</i> . Environmental Microbiology, 2019, 21, 3153-3171.	3.8	13
29	The protein phosphatase gene MaPpt1 acts as a programmer of microcycle conidiation and a negative regulator of UV-B tolerance in Metarhizium acridum. Applied Microbiology and Biotechnology, 2019, 103, 1351-1362.	3.6	10
30	Identification of the Achilles heels of the laurel wilt pathogen and its beetle vector. Applied Microbiology and Biotechnology, 2018, 102, 5673-5684.	3.6	12
31	Lipid biology in fungal stress and virulence: Entomopathogenic fungi. Fungal Biology, 2018, 122, 420-429.	2.5	80
32	Microbiota in insect fungal pathology. Applied Microbiology and Biotechnology, 2018, 102, 5873-5888.	3.6	65
33	The Beauveria bassiana Gas3 β-Glucanosyltransferase Contributes to Fungal Adaptation to Extreme Alkaline Conditions. Applied and Environmental Microbiology, 2018, 84, .	3.1	14
34	Hydrophobins contribute to root colonization and stress responses in the rhizosphere-competent insect pathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2018, 164, 517-528.	1.8	29
35	The PacC transcription factor regulates secondary metabolite production and stress response, but has only minor effects on virulence in the insect pathogenic fungus <i>Beauveria bassiana</i> . Environmental Microbiology, 2017, 19, 788-802.	3.8	48
36	Regulatory cascade and biological activity of <i>Beauveria bassiana</i> oosporein that limits bacterial growth after host death. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1578-E1586.	7.1	99

#	Article	IF	CITATIONS
37	Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection. Scientific Reports, 2017, 7, 42727.	3.3	36
38	The regulatory role of the transcription factor Crz1 in stress tolerance, pathogenicity, and its target gene expression in Metarhizium acridum. Applied Microbiology and Biotechnology, 2017, 101, 5033-5043.	3.6	23
39	Phylogenomic analysis supports multiple instances of polyphyly in the oomycete peronosporalean lineage. Molecular Phylogenetics and Evolution, 2017, 114, 199-211.	2.7	19
40	A bifunctional catalaseâ€peroxidase, <i>MakatG1</i> , contributes to virulence of <i>Metarhizium acridum</i> by overcoming oxidative stress on the host insect cuticle. Environmental Microbiology, 2017, 19, 4365-4378.	3.8	30
41	Central Nervous System Responses of the Oriental migratory, Locusta migratoria manilensis, to Fungal Infection. Scientific Reports, 2017, 7, 10340.	3.3	15
42	Application of the entomogenous fungus, Metarhizium anisopliae, for leafroller (Cnaphalocrocis) Tj ETQq0 0 0 rg Biotechnology, 2017, 101, 6793-6807.	gBT /Overlo 3.6	ock 10 Tf 50 5 26
43	The C-terminal MIR-containing region in the Pmt1 O-mannosyltransferase restrains sporulation and is dispensable for virulence in Beauveria bassiana. Applied Microbiology and Biotechnology, 2017, 101, 1143-1161.	3.6	6
44	Dissection of the contributions of cyclophilin genes to development and virulence in a fungal insect pathogen. Environmental Microbiology, 2016, 18, 3812-3826.	3.8	15
45	The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Applied Microbiology and Biotechnology, 2016, 100, 5491-5503.	3.6	35
46	Screening of Metarhizium anisopliae UV-induced mutants for faster growth yields a hyper-virulent isolate with greater UV and thermal tolerances. Applied Microbiology and Biotechnology, 2016, 100, 9217-9228.	3.6	13
47	Tissue, developmental, and caste-specific expression of odorant binding proteins in a eusocial insect, the red imported fire ant, Solenopsis invicta. Scientific Reports, 2016, 6, 35452.	3.3	24
48	Whole genome sequence of the emerging oomycete pathogen Pythium insidiosum strain CDC-B5653 isolated from an infected human in the USA. Genomics Data, 2016, 7, 60-61.	1.3	19
49	Efficient production of <i>Aschersonia placenta</i> protoplasts for transformation using optimization algorithms. Canadian Journal of Microbiology, 2016, 62, 579-587.	1.7	5
50	Extraction, identification and antimicrobial activity of a new furanone, grifolaone A, from <i>Grifola frondosa</i> . Natural Product Research, 2016, 30, 941-947.	1.8	19
51	Growth substrates and caleosin-mediated functions affect conidial virulence in the insect pathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2016, 162, 1913-1921.	1.8	31
52	A novel mitochondrial membrane protein, <scp>O</scp> hmm, limits fungal oxidative stress resistance and virulence in the insect fungal pathogen <scp><i>B</i></scp> <i>eauveria bassiana</i> . Environmental Microbiology, 2015, 17, 4213-4238.	3.8	21
53	Involvement of a caleosin in lipid storage, spore dispersal, and virulence in the entomopathogenic filamentous fungus, <scp><i>B</i></scp> <i>eauveria bassiana</i> . Environmental Microbiology, 2015, 17, 4600-4614.	3.8	42
54	Interaction between TATA-Binding Protein (TBP) and Multiprotein Bridging Factor-1 (MBF1) from the Filamentous Insect Pathogenic Fungus Beauveria bassiana. PLoS ONE, 2015, 10, e0140538.	2.5	9

Nemat O Keyhani

#	Article	IF	CITATIONS
55	Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics, 2015, 16, 867.	2.8	52
56	Improving mycoinsecticides for insect biological control. Applied Microbiology and Biotechnology, 2015, 99, 1057-1068.	3.6	128
57	Stress response signaling and virulence: insights from entomopathogenic fungi. Current Genetics, 2015, 61, 239-249.	1.7	137
58	Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3651-60.	7.1	111
59	Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana. Fungal Genetics and Biology, 2015, 83, 78-91.	2.1	25
60	<i><scp>B</scp>bmsn2</i> acts as a <scp>pH</scp> â€dependent negative regulator of secondary metabolite production in the entomopathogenic fungus <scp><i>B</i></scp> <i>eauveria bassiana</i> . Environmental Microbiology, 2015, 17, 1189-1202.	3.8	41
61	Expression of a Toll Signaling Regulator Serpin in a Mycoinsecticide for Increased Virulence. Applied and Environmental Microbiology, 2014, 80, 4531-4539.	3.1	43
62	Ablation of the <scp><i>creA</i></scp> regulator results in amino acid toxicity, temperature sensitivity, pleiotropic effects on cellular development and loss of virulence in the filamentous fungus <scp><i>B</i></scp> <i>eauveria bassiana</i> . Environmental Microbiology, 2014, 16, 1122-1136.	3.8	50
63	The transcriptional coâ€activator multiprotein bridging factor 1 from the fungal insect pathogen, <scp><i>B</i></scp> <i>eauveria bassiana</i> , mediates regulation of hyphal morphogenesis, stress tolerance and virulence. Environmental Microbiology, 2014, 16, 1879-1897.	3.8	37
64	A putative methyltransferase, mtrA, contributes to development, spore viability, protein secretion and virulence in the entomopathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2014, 160, 2526-2537.	1.8	24
65	Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Natural Product Reports, 2014, 31, 1287-1305.	10.3	134
66	Expression of trypsin modulating oostatic factor (TMOF) in an entomopathogenic fungus increases its virulence towards Anopheles gambiae and reduces fecundity in the target mosquito. Parasites and Vectors, 2013, 6, 22.	2.5	30
67	A carbon responsive <scp>G</scp> â€protein coupled receptor modulates broad developmental and genetic networks in the entomopathogenic fungus, <i><scp>B</scp>eauveria bassiana</i> . Environmental Microbiology, 2013, 15, 2902-2921.	3.8	54
68	Use of uridine auxotrophy (ura3) for markerless transformation of the mycoinsecticide Beauveria bassiana. Applied Microbiology and Biotechnology, 2013, 97, 3017-3025.	3.6	22
69	A putative α-glucoside transporter gene BbAGT1 contributes to carbohydrate utilization, growth, conidiation and virulence of filamentous entomopathogenic fungus Beauveria bassiana. Research in Microbiology, 2013, 164, 480-489.	2.1	12
70	Identification of catalase as an early up-regulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biological Control, 2013, 67, 85-93.	3.0	24
71	Culture conditions affect virulence and production of insect toxic proteins in the entomopathogenic fungus <i>Metarhizium anisopliae</i> . Biocontrol Science and Technology, 2013, 23, 1199-1212.	1.3	25
72	The autophagy gene BbATG5, involved in the formation of the autophagosome, contributes to cell differentiation and growth but is dispensable for pathogenesis in the entomopathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2013, 159, 243-252.	1.8	57

Νέματ Ο Κευμανι

#	Article	IF	CITATIONS
73	Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle. Insects, 2013, 4, 357-374.	2.2	467
74	Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Frontiers in Microbiology, 2013, 4, 24.	3.5	137
75	A fungal homologue of neuronal calcium sensor-1, Bbcsa1, regulates extracellular acidification and contributes to virulence in the entomopathogenic fungus Beauveria bassiana. Microbiology (United) Tj ETQq1	10.71884314	∙rg B ⊼ /Overic
76	Using host molecules to increase fungal virulence for biological control of insects. Virulence, 2012, 3, 415-417.	4.4	12
77	Exploiting host molecules to augment mycoinsecticide virulence. Nature Biotechnology, 2012, 30, 35-37.	17.5	80
78	CYP52X1, Representing New Cytochrome P450 Subfamily, Displays Fatty Acid Hydroxylase Activity and Contributes to Virulence and Growth on Insect Cuticular Substrates in Entomopathogenic Fungus Beauveria bassiana. Journal of Biological Chemistry, 2012, 287, 13477-13486.	3.4	104
79	The MAP kinase Bbslt2 controls growth, conidiation, cell wall integrity, and virulence in the insect pathogenic fungus Beauveria bassiana. Fungal Genetics and Biology, 2012, 49, 544-555.	2.1	81
80	Transcriptome analysis of the entomopathogenic fungus Beauveria bassiana grown on cuticular extracts of the coffee berry borer (Hypothenemus hampei). Microbiology (United Kingdom), 2012, 158, 1826-1842.	1.8	36
81	Pyrokinin β-Neuropeptide Affects Necrophoretic Behavior in Fire Ants (S. invicta), and Expression of β-NP in a Mycoinsecticide Increases Its Virulence. PLoS ONE, 2012, 7, e26924.	2.5	47
82	Have biopesticides come of age?. Trends in Biotechnology, 2012, 30, 250-258.	9.3	568
83	High-throughput insertion mutagenesis and functional screening in the entomopathogenic fungus Beauveria bassiana. Journal of Invertebrate Pathology, 2011, 106, 274-279.	3.2	39
84	Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, <i>Beauveria bassiana</i> . Molecular Microbiology, 2011, 80, 811-826.	2.5	211
85	Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in E. coli. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 327-335.	3.0	29
86	Contribution of the gas1 Gene of the Entomopathogenic Fungus Beauveria bassiana, Encoding a Putative Glycosylphosphatidylinositol-Anchored β-1,3-Glucanosyltransferase, to Conidial Thermotolerance and Virulence. Applied and Environmental Microbiology, 2011, 77, 2676-2684.	3.1	49
87	Sulfonylurea resistance as a new selectable marker for the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology, 2010, 87, 1151-1156.	3.6	46
88	Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2010, 156, 2549-2557.	1.8	79
89	Could insect phagocytic avoidance by entomogenous fungi have evolved via selection against soil amoeboid predators?. Microbiology (United Kingdom), 2010, 156, 2164-2171.	1.8	61
	Lactin manning reveals stage specific display of surface earbohydrates in in vitro and		

Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology (United) Tj ETQq0 0 **0.** gBT /Overtock 10 T

Νεματ Ο Κευμανι

#	Article	IF	CITATIONS
91	Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnology, 2009, 9, 74.	3.3	113
92	Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology (United Kingdom), 2009, 155, 3110-3120.	1.8	107
93	Intracellular infection of tick cell lines by the entomopathogenic fungus Metarhizium anisopliae. Microbiology (United Kingdom), 2008, 154, 1700-1709.	1.8	41
94	Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology (United Kingdom), 2007, 153, 3448-3457.	1.8	147
95	Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology (United Kingdom), 2007, 153, 3438-3447.	1.8	59
96	EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology (United Kingdom), 2006, 152, 2855-2864.	1.8	67
97	Molecular and immunological characterization of allergens from the entomopathogenic fungus Beauveria bassiana. Clinical and Molecular Allergy, 2006, 4, 12.	1.8	16
98	EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology (United Kingdom), 2006, 152, 2843-2854.	1.8	84
99	Allergens of the entomopathogenic fungus Beauveria bassiana. Clinical and Molecular Allergy, 2005, 3, 1.	1.8	27
100	Adhesion of the Entomopathogenic Fungus Beauveria (Cordyceps) bassiana to Substrata. Applied and Environmental Microbiology, 2005, 71, 5260-5266.	3.1	209
101	Oxalic Acid as a Fungal Acaracidal Virulence Factor. Journal of Medical Entomology, 2005, 42, 346-351.	1.8	70
102	Oxalic Acid as a Fungal Acaracidal Virulence Factor. Journal of Medical Entomology, 2005, 42, 346-351.	1.8	15
103	Pathogenicity of Entomopathogenic Fungi <i>Beauveria bassiana</i> and <i>Metarhizium anisopliae</i> to Ixodidae Tick Species <i>Dermacentor variabilis</i> , <i>Rhipicephalus sanguineus</i> , and <i>Ixodes scapularis</i> . Journal of Medical Entomology, 2004, 41, 705-711.	1.8	121
104	Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari:Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biological Control, 2004, 31, 414-421.	3.0	79
105	The Chitin Disaccharide,N,N′-Diacetylchitobiose, Is Catabolized byEscherichia coli and Is Transported/Phosphorylated by the Phosphoenolpyruvate:Clycose Phosphotransferase System. Journal of Biological Chemistry, 2000, 275, 33084-33090.	3.4	51
106	Chitin Catabolism in the Marine Bacterium Vibrio furnissii. Journal of Biological Chemistry, 2000, 275, 33068-33076.	3.4	70
107	Physiological aspects of chitin catabolism in marine bacteria. Biochimica Et Biophysica Acta - General Subjects, 1999, 1473, 108-122.	2.4	272
108	The Chitin Catabolic Cascade in the Marine Bacterium Vibrio furnissii. Journal of Biological Chemistry, 1996, 271, 33409-33413.	3.4	43

#	Article	IF	CITATIONS
109	The Chitin Catabolic Cascade in the Marine Bacterium Vibrio furnissii. Journal of Biological Chemistry, 1996, 271, 33414-33424.	3.4	91