E Anders Kolb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8548077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytarabine dose reduction in patients with lowâ€risk acute myeloid leukemia: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2022, 69, e29313.	0.8	5
2	CD123 Expression Is Associated With High-Risk Disease Characteristics in Childhood Acute Myeloid Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2022, 40, 252-261.	0.8	18
3	Polygenic Ara-C Response Score Identifies Pediatric Patients With Acute Myeloid Leukemia in Need of Chemotherapy Augmentation. Journal of Clinical Oncology, 2022, 40, 772-783.	0.8	7
4	Blood Count Recovery Following Induction Therapy for Acute Myeloid Leukemia in Children Does Not Predict Survival. Cancers, 2022, 14, 616.	1.7	4
5	Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. European Journal of Cancer, 2022, 164, 1-17.	1.3	24
6	Efficacy of Flotetuzumab in Combination with Cytarabine in Patient-Derived Xenograft Models of Pediatric Acute Myeloid Leukemia. Journal of Clinical Medicine, 2022, 11, 1333.	1.0	3
7	Modeling Down Syndrome Myeloid Leukemia by Sequential Introduction of GATA1 and STAG2 Mutations in Induced Pluripotent Stem Cells with Trisomy 21. Cells, 2022, 11, 628.	1.8	1
8	Mesothelin: An Immunotherapeutic Target beyond Solid Tumors. Cancers, 2022, 14, 1550.	1.7	20
9	Comprehensive Surfaceome Profiling to Identify and Validate Novel Cell-Surface Targets in Osteosarcoma. Molecular Cancer Therapeutics, 2022, 21, 903-913.	1.9	12
10	Imetelstat Induces Leukemia Stem Cell Death in Pediatric Acute Myeloid Leukemia Patient-Derived Xenografts. Journal of Clinical Medicine, 2022, 11, 1923.	1.0	5
11	Sorafenib in Combination With Standard Chemotherapy for Children With High Allelic Ratio <i>FLT3</i> /ITD+ Acute Myeloid Leukemia: A Report From the Children's Oncology Group Protocol AAML1031. Journal of Clinical Oncology, 2022, 40, 2023-2035.	0.8	36
12	Physician risk perceptions and surveillance practices for tyrosine kinase inhibitor long-term effects in pediatric CML. Pediatric Hematology and Oncology, 2022, 39, 453-467.	0.3	2
13	Hematopoietic Cell Transplantation in the Treatment of Pediatric Acute Myelogenous Leukemia and Myelodysplastic Syndromes: Guidelines from the American Society of Transplantation and Cellular Therapy. Transplantation and Cellular Therapy, 2022, 28, 530-545.	0.6	12
14	Heat shock factor 1 (HSF1-pSer326) predicts response to bortezomib-containing chemotherapy in pediatric AML: a COG report. Blood, 2021, 137, 1050-1060.	0.6	10
15	Initial <i>inÂvivo</i> testing of TPO-receptor agonist eltrombopag in osteosarcoma patient-derived xenograft models by the pediatric preclinical testing consortium. Pediatric Hematology and Oncology, 2021, 38, 8-13.	0.3	6
16	A 3-D hydrogel based system for hematopoietic differentiation and its use in modeling down syndrome associated transient myeloproliferative disorder. Biomaterials Science, 2021, 9, 6266-6281.	2.6	4
17	Second Relapse of Pediatric Patients with Acute Myeloid Leukemia: A Report on Current Treatment Strategies and Outcome of the AML-BFM Study Group. Cancers, 2021, 13, 789.	1.7	10
18	The B7-H3–Targeting Antibody–Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric Cancer Preclinical Solid Tumor Models. Clinical Cancer Research, 2021, 27, 2938-2946.	3.2	55

#	Article	IF	CITATIONS
19	Results of a phase 2, multicenter, singleâ€arm, openâ€label study of lenalidomide in pediatric patients with relapsed or refractory acute myeloid leukemia. Pediatric Blood and Cancer, 2021, 68, e28946.	0.8	3
20	Survival Following Relapse in Children with Acute Myeloid Leukemia: A Report from AML-BFM and COG. Cancers, 2021, 13, 2336.	1.7	30
21	Mesothelin is a novel cell surface disease marker and potential therapeutic target in acute myeloid leukemia. Blood Advances, 2021, 5, 2350-2361.	2.5	16
22	<i>CEBPA</i> -bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children's Oncology Group. Blood, 2021, 138, 1137-1147.	0.6	55
23	Testing of B7-H3 targeting antibody-drug conjugate (ADC) MGC018 in models of pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC) Journal of Clinical Oncology, 2021, 39, 10037-10037.	0.8	2
24	High-dose AraC is essential for the treatment of ML-DS independent of postinduction MRD: results of the COG AAML1531 trial. Blood, 2021, 138, 2337-2346.	0.6	16
25	Gemtuzumab Ozogamicin Improves Event-Free Survival and Reduces Relapse in Pediatric <i>KMT2A</i> -Rearranged AML: Results From the Phase III Children's Oncology Group Trial AAML0531. Journal of Clinical Oncology, 2021, 39, 3149-3160.	0.8	40
26	Outcomes of intensification of induction chemotherapy for children with highâ€risk acute myeloid leukemia: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2021, 68, e29281.	0.8	6
27	Bortezomib is significantly beneficial for de novo pediatric AML patients with low phosphorylation of the NFâ€₽B subunit RelA. Proteomics - Clinical Applications, 2021, , 2100072.	0.8	4
28	Immunotherapeutic Targeting of Mesothelin Positive Pediatric AML Using Bispecific T Cell Engaging Antibodies. Cancers, 2021, 13, 5964.	1.7	2
29	A Phase 2 Trial of KIR-Mismatched Unrelated Donor Transplantation Using in Vivo T Cell Depletion with Antithymocyte Globulin in Acute Myelogenous Leukemia: Children's Oncology Group AAML05P1 Study. Biology of Blood and Marrow Transplantation, 2020, 26, 712-717.	2.0	8
30	Stability and change in family psychosocial risk over 6 months in pediatric cancer and its association with medical and psychosocial healthcare utilization. Pediatric Blood and Cancer, 2020, 67, e28051.	0.8	8
31	Doseâ€response effect of eribulin in preclinical models of osteosarcoma by the pediatric preclinical testing consortium. Pediatric Blood and Cancer, 2020, 67, e28606.	0.8	9
32	Morphologic remission status is limited compared to ΔN flow cytometry: a Children's Oncology Group AAML0531 report. Blood Advances, 2020, 4, 5050-5061.	2.5	21
33	CD81 knockout promotes chemosensitivity and disrupts in vivo homing and engraftment in acute lymphoblastic leukemia. Blood Advances, 2020, 4, 4393-4405.	2.5	16
34	Modeling Transient Abnormal Myelopoiesis Using Induced Pluripotent Stem Cells and CRISPR/Cas9 Technology. Molecular Therapy - Methods and Clinical Development, 2020, 19, 201-209.	1.8	8
35	Aggressive Hematopoietic Malignancy Characterized by Biallelic Loss of SMARCB1. JCO Precision Oncology, 2020, 4, 1280-1284.	1.5	1
36	Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children's Oncology Group. Haematologica, 2020, 105, 1879-1886.	1.7	83

#	Article	IF	CITATIONS
37	Phase I/II Study of CPX-351 Followed by Fludarabine, Cytarabine, and Granulocyte-Colony Stimulating Factor for Children With Relapsed Acute Myeloid Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2020, 38, 2170-2177.	0.8	35
38	Initial in vivo testing of a multitarget kinase inhibitor, regorafenib, by the Pediatric Preclinical Testing Consortium. Pediatric Blood and Cancer, 2020, 67, e28222.	0.8	8
39	Error-corrected sequencing strategies enable comprehensive detection of leukemic mutations relevant for diagnosis and minimal residual disease monitoring. BMC Medical Genomics, 2020, 13, 32.	0.7	14
40	Preclinical evaluation of the combination of AZD1775 and irinotecan against selected pediatric solid tumors: A Pediatric Preclinical Testing Consortium report. Pediatric Blood and Cancer, 2020, 67, e28098.	0.8	13
41	Effect of Dexrazoxane on Left Ventricular Systolic Function and Treatment Outcomes in Patients With Acute Myeloid Leukemia: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2020, 38, 2398-2406.	0.8	40
42	Comprehensive Transcriptome Profiling of Cryptic <i>CBFA2T3–GLIS2</i> Fusion–Positive AML Defines Novel Therapeutic Options: A COG and TARGET Pediatric AML Study. Clinical Cancer Research, 2020, 26, 726-737.	3.2	42
43	Strong concordance between RNA structural and single nucleotide variants identified via next generation sequencing techniques in primary pediatric leukemia and patient-derived xenograft samples. Genomics and Informatics, 2020, 18, e6.	0.4	2
44	Newly Diagnosed Childhood AML Patients Treated with Bortezomib Show Superior Survival If CD74 Is Expressed: A Report of 991 Patients from the Children's Oncology Group AAML1031 Protocol. Blood, 2020, 136, 39-39.	0.6	1
45	Mentors' perspectives on the successes and challenges of mentoring in the COG Young Investigator mentorship program: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2019, 66, e27920.	0.8	7
46	A psychosocial clinical care pathway for pediatric hematopoietic stem cell transplantation. Pediatric Blood and Cancer, 2019, 66, e27889.	0.8	4
47	Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Reports, 2019, 29, 1675-1689.e9.	2.9	103
48	Management of chronic myeloid leukemia in children and adolescents: Recommendations from the Children's Oncology Group CML Working Group. Pediatric Blood and Cancer, 2019, 66, e27827.	0.8	50
49	Development of a Novel Next-Generation Sequencing Assay for Carrier Screening in Old Order Amish and Mennonite Populations of Pennsylvania. Journal of Molecular Diagnostics, 2019, 21, 687-694.	1.2	13
50	Development of acute lymphoblastic leukemia following treatment for acute myeloid leukemia in children with Down syndrome: A case report and retrospective review of Children's Oncology Group acute myeloid leukemia trials. Pediatric Blood and Cancer, 2019, 66, e27700.	0.8	6
51	Screening for Family Psychosocial Risk in Pediatric Hematopoietic Stem Cell Transplantation with the Psychosocial Assessment Tool. Biology of Blood and Marrow Transplantation, 2019, 25, 1374-1381.	2.0	19
52	Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia, 2019, 33, 1934-1943.	3.3	69
53	Risk factors for chemotherapyâ€induced nausea in pediatric patients receiving highly emetogenic chemotherapy. Pediatric Blood and Cancer, 2019, 66, e27584.	0.8	16
54	Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clinical Cancer Research, 2019, 25, 2278-2289.	3.2	57

#	Article	IF	CITATIONS
55	Bone marrow transplant and pediatric multiple myeloma. Pediatric Blood and Cancer, 2019, 66, e27528.	0.8	3
56	A phase II study of eribulin in recurrent or refractory osteosarcoma: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2019, 66, e27524.	0.8	19
57	Correlation of CD123 Expression Level with Disease Characteristics and Outcomes in Pediatric Acute Myeloid Leukemia: A Report from the Children's Oncology Group. Blood, 2019, 134, 459-459.	0.6	6
58	Response to Sorafenib in FLT3/ITD AML Is Depedent on Co-Occurring Mutational Profile. Blood, 2019, 134, 119-119.	0.6	6
59	Evaluation of the multi-kinase inhibitor regorafenib in the Pediatric Preclinical Testing Consortium osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma in vivo models Journal of Clinical Oncology, 2019, 37, 10038-10038.	0.8	2
60	Evaluation of the TPO-receptor agonist Eltrombopag in the Pediatric Preclinical Testing Consortium osteosarcoma in vivo models Journal of Clinical Oncology, 2019, 37, e22502-e22502.	0.8	0
61	Acupressure bands do not improve chemotherapyâ€induced nausea control in pediatric patients receiving highly emetogenic chemotherapy: A singleâ€blinded, randomized controlled trial. Cancer, 2018, 124, 1188-1196.	2.0	15
62	Delivery of care consistent with the psychosocial standards in pediatric cancer: Current practices in the United States. Pediatric Blood and Cancer, 2018, 65, e26869.	0.8	73
63	The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nature Medicine, 2018, 24, 103-112.	15.2	525
64	Immunotherapeutic Targeting of Mesothelin in Acute Myeloid Leukemia in Vitro with Anetumab Ravtansine and a Novel Antibody-Drug Conjugate. Blood, 2018, 132, 1448-1448.	0.6	5
65	Enhancement of Eligibility Guidelines for Gemtuzumab Ozogamicin Therapy for Childhood Acute Myeloid Leukemia: A Report from Children's Oncology Group Protocol AAML0531. Blood, 2018, 132, 1490-1490.	0.6	1
66	Comprehensive Transcriptome Profiling of Cryptic CBFA2T3-GLIS2 Fusion-Positive AML Defines Novel Therapeutic Options — a COG and Target Pediatric AML Study. Blood, 2018, 132, 881-881.	0.6	3
67	Distinct age-associated molecular profiles in acute myeloid leukemia defined by comprehensive clinical genomic profiling. Oncotarget, 2018, 9, 26417-26430.	0.8	25
68	Disease Characteristics and Prognostic Implications of Cell-Surface FLT3 Receptor (CD135) Expression in Pediatric Acute Myeloid Leukemia: A Report from the Children's Oncology Group. Clinical Cancer Research, 2017, 23, 3649-3656.	3.2	21
69	Epigenetic drug combination induces remission in mouse xenograft models of pediatric acute myeloid leukemia. Leukemia Research, 2017, 58, 91-97.	0.4	13
70	CRISPR/Cas9-Directed Reassignment of the GATA1 Initiation Codon in K562 Cells to Recapitulate AML in Down Syndrome. Molecular Therapy - Nucleic Acids, 2017, 7, 288-298.	2.3	6
71	Opportunities for expanding clinical trial enrollment for relapsed and refractory pediatric acute myeloid leukemia in the United States and Canada. Pediatric Blood and Cancer, 2017, 64, e26632.	0.8	3
72	Implementing the psychosocial standards in pediatric cancer: Current staffing and services available. Pediatric Blood and Cancer, 2017, 64, e26634.	0.8	62

#	Article	IF	CITATIONS
73	Initial testing of VS-4718, a novel inhibitor of focal adhesion kinase (FAK), against pediatric tumor models by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2017, 64, e26304.	0.8	20
74	Initial testing (stage 1) of the curaxin CBL0137 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2017, 64, e26263.	0.8	15
75	Cytotoxicity of Zardaverine in Embryonal Rhabdomyosarcoma from a Costello Syndrome Patient. Frontiers in Oncology, 2017, 7, 42.	1.3	7
76	Down syndrome and AML: where do we go from here?. Blood, 2017, 129, 3274-3275.	0.6	4
77	MicroRNA Expression-Based Model Indicates Event-Free Survival in Pediatric Acute Myeloid Leukemia. Journal of Clinical Oncology, 2017, 35, 3964-3977.	0.8	49
78	Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice. Frontiers in Oncology, 2016, 6, 162.	1.3	21
79	Initial Testing (Stage 1) of MKâ€8242—A Novel MDM2 Inhibitor—by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2016, 63, 1744-1752.	0.8	27
80	CSF3R mutations have a high degree of overlap with CEBPA mutations in pediatric AML. Blood, 2016, 127, 3094-3098.	0.6	49
81	Evaluation of Alternative <i>In Vivo</i> Drug Screening Methodology: A Single Mouse Analysis. Cancer Research, 2016, 76, 5798-5809.	0.4	52
82	Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor selinexor (KPTâ€330): A report from the pediatric preclinical testing program. Pediatric Blood and Cancer, 2016, 63, 276-286.	0.8	28
83	Initial Testing of NSC 750854, a Novel Purine Analog, Against Pediatric Tumor Models by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2016, 63, 443-450.	0.8	0
84	Targeting Glycoprotein NMB With Antibodyâ€Drug Conjugate, Glembatumumab Vedotin, for the Treatment of Osteosarcoma. Pediatric Blood and Cancer, 2016, 63, 32-38.	0.8	46
85	The Addition of Bortezomib to Standard Chemotherapy for Pediatric Acute Myeloid Leukemia Has Increased Toxicity without Therapeutic Benefit: A Report from the Children's Oncology Group. Blood, 2016, 128, 899-899.	0.6	10
86	Acute myeloid leukemia in children and adolescents: identification of new molecular targets brings promise of new therapies. Hematology American Society of Hematology Education Program, 2015, 2015, 507-513.	0.9	28
87	Initial testing (stage 1) of the antiâ€microtubule agents cabazitaxel and docetaxel, by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2015, 62, 1897-1905.	0.8	14
88	Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program: <i>PALB2</i> mutation predicts exceptional <i>in vivo</i> response to BMN 673. Pediatric Blood and Cancer, 2015, 62, 91-98.	0.8	65
89	A phase I trial and viral clearance study of reovirus (Reolysin) in children with relapsed or refractory extraâ€cranial solid tumors: A Children's Oncology Group Phase I Consortium report. Pediatric Blood and Cancer, 2015, 62, 751-758.	0.8	47
90	Initial testing (stage 1) of the tubulin binding agent nanoparticle albuminâ€bound (<i>nab</i>) paclitaxel (Abraxane [®]) by the Pediatric Preclinical Testing Program (PPTP). Pediatric Blood and Cancer, 2015, 62, 1214-1221.	0.8	29

#	Article	IF	CITATIONS
91	Initial testing (stage 1) of BAL101553, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2015, 62, 1106-1109.	0.8	9
92	MicroRNAs and Potential Targets in Osteosarcoma: Review. Frontiers in Pediatrics, 2015, 3, 69.	0.9	141
93	Disruption of Annexin II /p11 Interaction Suppresses Leukemia Cell Binding, Homing and Engraftment, and Sensitizes the Leukemia Cells to Chemotherapy. PLoS ONE, 2015, 10, e0140564.	1.1	23
94	Vorinostat Enhances Cytotoxicity of SN-38 and Temozolomide in Ewing Sarcoma Cells and Activates STAT3/AKT/MAPK Pathways. PLoS ONE, 2015, 10, e0142704.	1.1	34
95	Synergistic Activity of PARP Inhibition by Talazoparib (BMN 673) with Temozolomide in Pediatric Cancer Models in the Pediatric Preclinical Testing Program. Clinical Cancer Research, 2015, 21, 819-832.	3.2	100
96	Challenges in Converting Acute Myeloid Leukemia (AML) Genomics Into AML Clinical Trials. Journal of Clinical Oncology, 2015, 33, 4238-4239.	0.8	0
97	Abstract LB-213: Combination of epigenetic modifiers achieves complete remission in xenograft models of pediatric acute myeloid leukemia. , 2015, , .		1
98	Comprehensive Sequence Analysis of Relapse and Refractory Pediatric Acute Myeloid Leukemia Identifies miRNA and mRNA Transcripts Associated with Treatment Resistance - a Report from the COG/NCI-Target AML Initiative. Blood, 2015, 126, 687-687.	0.6	2
99	Discovery and Functional Validation of Novel Pediatric Specific FLT3 Activating Mutations in Acute Myeloid Leukemia: Results from the COG/NCI Target Initiative. Blood, 2015, 126, 87-87.	0.6	19
100	Insulin-Like Growth Factor 1 Receptor and Response to Anti-IGF1R Antibody Therapy in Osteosarcoma. PLoS ONE, 2014, 9, e106249.	1.1	38
101	Initial testing (Stage 1) of TAK-701, a humanized hepatocyte growth factor binding antibody, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 380-382.	0.8	5
102	Initial solid tumor testing (Stage 1) of AZD1480, an inhibitor of Janus kinases 1 and 2 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1972-1979.	0.8	7
103	Initial testing (stage 1) of the investigational mTOR kinase inhibitor MLN0128 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1486-1489.	0.8	19
104	Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 245-252.	0.8	37
105	Initial testing (stage 1) of the notch inhibitor PFâ€03084014, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1493-1496.	0.8	6
106	Initial testing (stage 1) of the poloâ€like kinase inhibitor volasertib (BI 6727), by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 158-164.	0.8	46
107	Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1816-1821.	0.8	35
108	Oncolytic Viruses for Potential Osteosarcoma Therapy. Advances in Experimental Medicine and Biology, 2014, 804, 259-283.	0.8	9

#	Article	IF	CITATIONS
109	Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 633-641.	0.8	55
110	Initial testing (stage 1) of temozolomide by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 783-790.	0.8	13
111	Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Dyskeratosis Congenita. Biology of Blood and Marrow Transplantation, 2013, 19, 1238-1243.	2.0	108
112	Xenograft and genetically engineered mouse model systems of osteosarcoma and Ewing's sarcoma: tumor models for cancer drug discovery. Expert Opinion on Drug Discovery, 2013, 8, 1181-1189.	2.5	28
113	Initial testing (stage 1) of the phosphatidylinositol 3′ kinase inhibitor, SAR245408 (XL147) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 791-798.	0.8	19
114	Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 1325-1332.	0.8	77
115	A Review of Targeted Therapies Evaluated by the Pediatric Preclinical Testing Program for Osteosarcoma. Frontiers in Oncology, 2013, 3, 132.	1.3	48
116	Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine), by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 1860-1867.	0.8	27
117	Initial testing (stage 1) of ganetespib, an Hsp90 inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, E42-5.	0.8	11
118	Initial testing (stage 1) of the mTOR kinase inhibitor AZD8055 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 191-199.	0.8	35
119	Testing of the topoisomerase 1 inhibitor Genzâ€644282 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 200-209.	0.8	16
120	Progress of oncolytic viruses in sarcomas. Expert Review of Anticancer Therapy, 2012, 12, 229-242.	1.1	9
121	Initial testing (Stage 1) of AT13387, an HSP90 inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 185-188.	0.8	14
122	Combination testing (Stage 2) of the Antiâ€IGFâ€1 receptor antibody IMCâ€A12 with rapamycin by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 729-735.	0.8	44
123	Combination testing of cediranib (AZD2171) against childhood cancer models by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 566-571.	0.8	26
124	Initial testing (stage 1) of LCL161, a SMAC mimetic, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 636-639.	0.8	73
125	Initial testing of the CENPâ€E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 58, 916-923.	0.8	39
126	Initial testing (stage 1) by the pediatric preclinical testing program of RO4929097, a γâ€secretase inhibitor targeting notch signaling. Pediatric Blood and Cancer, 2012, 58, 815-818.	0.8	31

#	Article	IF	CITATIONS
127	Initial testing of JNJâ€26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 329-332.	0.8	22
128	Initial testing of the investigational NEDD8â€activating enzyme inhibitor MLN4924 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 246-253.	0.8	30
129	Initial testing (stage 1) of SClâ€1776, a PIM1 kinase inhibitor, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 749-752.	0.8	20
130	Testing of the Akt/PKB inhibitor MKâ€⊋206 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 518-524.	0.8	36
131	Initial testing (stage 1) of the cyclin dependent kinase inhibitor SCH 727965 (dinaciclib) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 1266-1274.	0.8	38
132	Efficacy and pharmacokinetic/pharmacodynamic evaluation of the Aurora kinase A inhibitor MLN8237 against preclinical models of pediatric cancer. Cancer Chemotherapy and Pharmacology, 2011, 68, 1291-1304.	1.1	88
133	Initial testing (stage 1) of the IGFâ€1 receptor inhibitor BMSâ€754807 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 56, 595-603.	0.8	67
134	Initial testing (stage 1) of the polyamine analog PG11047 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 57, 268-274.	0.8	18
135	Initial testing of lenalidomide by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 57, 606-611.	0.8	4
136	Initial testing of the hypoxiaâ€activated prodrug PRâ€104 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2011, 57, 443-453.	0.8	31
137	Systemic administration of reovirus (Reolysin) inhibits growth of human sarcoma xenografts. Cancer, 2011, 117, 1764-1774.	2.0	40
138	Initial testing (stage 1) of mapatumumab (HGSâ€ETR1) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 54, 307-310.	0.8	13
139	Intracranial hemorrhage in alloimmune thrombocytopenia: stratified management to prevent recurrence in the subsequent affected fetus. American Journal of Obstetrics and Gynecology, 2010, 203, 135.e1-135.e14.	0.7	81
140	Initial testing of topotecan by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 54, 707-715.	0.8	37
141	Initial testing of a monoclonal antibody (IMCâ€A12) against IGFâ€IR by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 54, 921-926.	0.8	89
142	Moving towards nonâ€invasive assessments of prognosis in osteosarcoma. Pediatric Blood and Cancer, 2010, 54, 497-498.	0.8	1
143	Initial testing of the aurora kinase a inhibitor MLN8237 by the Pediatric Preclinical Testing Program (PPTP). Pediatric Blood and Cancer, 2010, 55, 26-34.	0.8	195
144	R1507, a fully human monoclonal antibody targeting IGFâ€1R, is effective alone and in combination with rapamycin in inhibiting growth of osteosarcoma xenografts. Pediatric Blood and Cancer, 2010, 55, 67-75.	0.8	67

#	Article	IF	CITATIONS
145	Initial testing of the replication competent Seneca Valley virus (NTXâ€010) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 295-303.	0.8	70
146	Initial testing (stage 1) of AZD6244 (ARRYâ€142886) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 668-677.	0.8	94
147	Initial testing (stage 1) of the Akt inhibitor GSK690693 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 1329-1337.	0.8	43
148	Initial testing (stage 1) of the multi-targeted kinase inhibitor sorafenib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2010, 55, 1126-1133.	0.8	51
149	Stage 2 Combination Testing of Rapamycin with Cytotoxic Agents by the Pediatric Preclinical Testing Program. Molecular Cancer Therapeutics, 2010, 9, 101-112.	1.9	89
150	Inhibition of Src Phosphorylation Alters Metastatic Potential of Osteosarcoma <i>In vitro</i> but not <i>In vivo</i> . Clinical Cancer Research, 2009, 15, 3416-3422.	3.2	70
151	Development of IGF-IR inhibitors in pediatric sarcomas. Current Oncology Reports, 2009, 11, 307-313.	1.8	48
152	Preclinical activity of palifosfamide lysine (ZIO-201) in pediatric sarcomas including oxazaphosphorine-resistant osteosarcoma. Cancer Chemotherapy and Pharmacology, 2009, 64, 733-740.	1.1	28
153	Initial testing of aplidin by the pediatric preâ€clinical testing program. Pediatric Blood and Cancer, 2009, 53, 509-512.	0.8	10
154	Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 505-508.	0.8	54
155	Initial testing (stage 1) of lapatinib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 594-598.	0.8	28
156	Initial testing (stage 1) of the kinesin spindle protein inhibitor ispinesib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2009, 53, 1255-1263.	0.8	40
157	Successful outcome with tandem myeloablative chemotherapy and autologous peripheral blood stem cell transplants in a patient with atypical teratoid/rhabdoid tumor of the central nervous system. Journal of Neuro-Oncology, 2008, 88, 211-215.	1.4	19
158	Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 37-45.	0.8	112
159	Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 581-587.	0.8	116
160	Initial testing of cisplatin by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 992-1000.	0.8	30
161	Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 799-805.	0.8	162
162	Initial testing of dasatinib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1198-1206.	0.8	69

#	Article	IF	CITATIONS
163	Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGFâ€1 receptor by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 50, 1190-1197.	0.8	168

Stage 1 testing and pharmacodynamic evaluation of the HSP90 inhibitor alvespimycin ($17\hat{a}\in DMAG$,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{1}{9}$

165	Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2008, 51, 42-48.	0.8	88
166	The Combination of Clofarabine and Cytarabine in Pediatric Relapsed Acute Lymphoblastic Leukemia: A Case Report. Chemotherapy, 2008, 54, 120-124.	0.8	13
167	Preclinical Analysis of Tasidotin HCl in Ewing's Sarcoma, Rhabdomyosarcoma, Synovial Sarcoma, and Osteosarcoma. Clinical Cancer Research, 2007, 13, 5446-5454.	3.2	22
168	The Folate Receptor α Is Frequently Overexpressed in Osteosarcoma Samples and Plays a Role in the Uptake of the Physiologic Substrate 5-Methyltetrahydrofolate. Clinical Cancer Research, 2007, 13, 2557-2567.	3.2	52
169	The pediatric preclinical testing program: Description of models and early testing results. Pediatric Blood and Cancer, 2007, 49, 928-940.	0.8	430
170	Parallel Randomized Trials of Risk-Based Therapy for Fetal Alloimmune Thrombocytopenia. Obstetrics and Gynecology, 2006, 107, 91-96.	1.2	165
171	Dickkopf 3 Inhibits Invasion and Motility of Saos-2 Osteosarcoma Cells by Modulating the Wnt-β-Catenin Pathway. Cancer Research, 2004, 64, 2734-2739.	0.4	255
171 172	Dickkopf 3 Inhibits Invasion and Motility of Saos-2 Osteosarcoma Cells by Modulating the Wnt-Î ² -Catenin Pathway. Cancer Research, 2004, 64, 2734-2739. Phase II study of ecteinascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer, 2003, 98, 832-840.	0.4	255 97
171 172 173	Dickkopf 3 Inhibits Invasion and Motility of Saos-2 Osteosarcoma Cells by Modulating the Wnt-Î2-Catenin Pathway. Cancer Research, 2004, 64, 2734-2739. Phase II study of ecteinascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer, 2003, 98, 832-840. Imatinib mesylate in Philadelphia chromosome-positive leukemia of childhood. Cancer, 2003, 98, 2643-2650.	0.4 2.0 2.0	255 97 37
171 172 173 174	Dickkopf 3 Inhibits Invasion and Motility of Saos-2 Osteosarcoma Cells by Modulating the Wnt-β-Catenin Pathway. Cancer Research, 2004, 64, 2734-2739. Phase II study of ecteinascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer, 2003, 98, 832-840. Imatinib mesylate in Philadelphia chromosome-positive leukemia of childhood. Cancer, 2003, 98, 2643-2650. Long-Term Event-Free Survival After Intensive Chemotherapy for Ewing's Family of Tumors in Children and Young Adults. Journal of Clinical Oncology, 2003, 21, 3423-3430.	0.4 2.0 2.0 0.8	255 97 37 167
171 172 173 174 175	Dickkopf 3 Inhibits Invasion and Motility of Saos-2 Osteosarcoma Cells by Modulating the Wnt-12-Catenin Pathway. Cancer Research, 2004, 64, 2734-2739. Phase II study of ecteinascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer, 2003, 98, 832-840. Imatinib mesylate in Philadelphia chromosome-positive leukemia of childhood. Cancer, 2003, 98, 2643-2650. Long-Term Event-Free Survival After Intensive Chemotherapy for Ewing's Family of Tumors in Children and Young Adults. Journal of Clinical Oncology, 2003, 21, 3423-3430. Ecteinascidin-743 inhibits activated but not constitutive transcription. Cancer Research, 2002, 62, 3377-81.	0.4 2.0 2.0 0.8	255 97 37 167 77