
Todd Gouin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8547930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks – development and application of a toxicity study assessment tool. Microplastics and Nanoplastics, 2022, 2, 2.	4.1	20
2	Clarifying the importance of microplastic particles as vectors for long-range transport of chemical contaminants: a response to letter to the editor. Microplastics and Nanoplastics, 2022, 2, .	4.1	0
3	Risk-based management framework for microplastics in aquatic ecosystems. Microplastics and Nanoplastics, 2022, 2, .	4.1	56
4	Clarifying the absence of evidence regarding human health risks to microplastic particles in drinking-water: High quality robust data wanted. Environment International, 2021, 150, 106141.	4.8	12
5	Exposure and toxicity characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. International Journal of Life Cycle Assessment, 2021, 26, 899-915.	2.2	58
6	Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Microplastics and Nanoplastics, 2021, 1, .	4.1	42
7	Addressing the importance of microplastic particles as vectors for long-range transport of chemical contaminants: perspective in relation to prioritizing research and regulatory actions. Microplastics and Nanoplastics, 2021, 1, .	4.1	21
8	Quality Criteria for Microplastic Effect Studies in the Context of Risk Assessment: A Critical Review. Environmental Science & Technology, 2020, 54, 11692-11705.	4.6	172
9	Toward an Improved Understanding of the Ingestion and Trophic Transfer of Microplastic Particles: Critical Review and Implications for Future Research. Environmental Toxicology and Chemistry, 2020, 39, 1119-1137.	2.2	96
10	Toward the Development and Application of an Environmental Risk Assessment Framework for Microplastic. Environmental Toxicology and Chemistry, 2019, 38, 2087-2100.	2.2	69
11	Modeling in environmental chemistry. Environmental Sciences: Processes and Impacts, 2018, 20, 10-11.	1.7	6
12	Environmental fate and exposure models: advances and challenges in 21 st century chemical risk assessment. Environmental Sciences: Processes and Impacts, 2018, 20, 58-71.	1.7	48
13	A chemical activity approach to exposure and risk assessment of chemicals. Environmental Toxicology and Chemistry, 2018, 37, 1235-1251.	2.2	40
14	Using Benchmarking To Strengthen the Assessment of Persistence. Environmental Science & Technology, 2017, 51, 4-11.	4.6	38
15	Routes of uptake of diclofenac, fluoxetine, and triclosan into sedimentâ€dwelling worms. Environmental Toxicology and Chemistry, 2016, 35, 836-842.	2.2	30
16	Passive sampling methods for contaminated sediments: Scientific rationale supporting use of freely dissolved concentrations. Integrated Environmental Assessment and Management, 2014, 10, 197-209.	1.6	153
17	Plastics in the marine environment. Environmental Toxicology and Chemistry, 2014, 33, 5-10.	2.2	115
18	Neutral polyfluoroalkyl substances in the global Atmosphere. Environmental Sciences: Processes and Impacts, 2014, 16, 404-413.	1.7	46

TODD GOUIN

#	Article	IF	CITATIONS
19	Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment. Toxicology in Vitro, 2014, 28, 8-12.	1.1	59
20	The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: Introduction to a SETAC international workshop. Environmental Toxicology and Chemistry, 2013, 32, 13-19.	2.2	48
21	Influence of global climate change on chemical fate and bioaccumulation: The role of multimedia models. Environmental Toxicology and Chemistry, 2013, 32, 20-31.	2.2	102
22	Simulated use and wash-off release of decamethylcyclopentasiloxane used in anti-perspirants. Chemosphere, 2013, 93, 726-734.	4.2	29
23	Cyclic volatile methyl siloxanes in the environment. Chemosphere, 2013, 93, 709-710.	4.2	15
24	Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions?. Environmental Health Perspectives, 2012, 120, 1221-1229.	2.8	1,033
25	Prioritising chemicals used in personal care products in China for environmental risk assessment: Application of the RAIDAR model. Environmental Pollution, 2012, 165, 208-214.	3.7	37
26	A Thermodynamic Approach for Assessing the Environmental Exposure of Chemicals Absorbed to Microplastic. Environmental Science & amp; Technology, 2011, 45, 1466-1472.	4.6	366
27	Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere, 2011, 84, 199-206.	4.2	70
28	Currentâ€use pesticide transport to Costa Rica's highâ€altitude tropical cloud forest. Environmental Toxicology and Chemistry, 2011, 30, 2709-2717.	2.2	24
29	Polycyclic aromatic hydrocarbons in air and snow from Fairbanks, Alaska. Atmospheric Pollution Research, 2010, 1, 9-15.	1.8	26
30	The precautionary principle and environmental persistence: prioritizing the decision-making process. Environmental Science and Policy, 2010, 13, 175-184.	2.4	17
31	Comparison of Four Active and Passive Sampling Techniques for Pesticides in Air. Environmental Science & Technology, 2010, 44, 3410-3416.	4.6	113
32	Levels and Seasonal Variability of Pesticides in the Rural Atmosphere of Southern Ontario. Journal of Agricultural and Food Chemistry, 2010, 58, 1077-1084.	2.4	34
33	Spatial and temporal pattern of pesticides in the global atmosphere. Journal of Environmental Monitoring, 2010, 12, 1650.	2.1	106
34	Atmospheric concentrations of current-use pesticides across south-central Ontario using monthly-resolved passive air samplers. Atmospheric Environment, 2008, 42, 8096-8104.	1.9	48
35	Field Testing Passive Air Samplers for Current Use Pesticides in a Tropical Environment. Environmental Science & Technology, 2008, 42, 6625-6630.	4.6	98
36	Chapter 6 Towards quantitative monitoring of semivolatile organic compounds using passive air samplers. Comprehensive Analytical Chemistry, 2007, , 125-137.	0.7	2

TODD GOUIN

#	Article	IF	CITATIONS
37	Time Trends of Arctic Contamination in Relation to Emission History and Chemical Persistence and Partitioning Properties. Environmental Science & amp; Technology, 2007, 41, 5986-5992.	4.6	59
38	Spatial and Temporal Trends of Chiral Organochlorine Signatures in Great Lakes Air Using Passive Air Samplers. Environmental Science & 2007, 100, 2007, 41, 3877-3883.	4.6	37
39	Concentrations of decabromodiphenyl ether in air from Southern Ontario: Implications for particle-bound transport. Chemosphere, 2006, 64, 256-261.	4.2	78
40	Polychlorinated Naphthalenes in Great Lakes Air:Â Assessing Spatial Trends and Combustion Inputs Using PUF Disk Passive Air Samplers. Environmental Science & Technology, 2006, 40, 5333-5339.	4.6	46
41	Global pilot study for persistent organic pollutants (POPs) using PUF disk passive air samplers. Environmental Pollution, 2006, 144, 445-452.	3.7	151
42	Policy by analogy: precautionary principle, science and polybrominated diphenyl ethers. International Journal of Clobal Environmental Issues, 2005, 5, 54.	0.1	2
43	Variability of concentrations of polybrominated diphenyl ethers and polychlorinated biphenyls in air: implications for monitoring, modeling and control. Atmospheric Environment, 2005, 39, 151-166.	1.9	110
44	Passive and Active Air Samplers as Complementary Methods for Investigating Persistent Organic Pollutants in the Great Lakes Basin. Environmental Science & Technology, 2005, 39, 9115-9122.	4.6	181
45	Comparison of two methods for obtaining degradation half-lives. Chemosphere, 2004, 56, 531-535.	4.2	50
46	Evidence for the "grasshopper―effect and fractionation during long-range atmospheric transport of organic contaminants. Environmental Pollution, 2004, 128, 139-148.	3.7	189
47	Vegetation-air exchange facilitates the long-range transport of some SVOCs. Stochastic Environmental Research and Risk Assessment, 2003, 17, 241-243.	1.9	1
48	Temperature Dependence of the Characteristic Travel Distance. Environmental Science & Technology, 2003, 37, 766-771.	4.6	91
49	Modelling the environmental fate of the polybrominated diphenyl ethers. Environment International, 2003, 29, 717-724.	4.8	146
50	Airâ^'Surface Exchange of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls. Environmental Science & Technology, 2002, 36, 1426-1434.	4.6	146
51	Selecting internally consistent physicochemical properties of organic compounds. Environmental Toxicology and Chemistry, 2002, 21, 941-953.	2.2	149
52	Selecting internally consistent physicochemical properties of organic compounds. Environmental Toxicology and Chemistry, 2002, 21, 941-53.	2.2	11
53	Screening Chemicals for Persistence in the Environment. Environmental Science & Technology, 2000, 34, 881-884.	4.6	96