List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8547684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint. Scripta Materialia, 2012, 66, 531-534.	5.2	108
2	Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Materialia, 2010, 58, 5714-5723.	7.9	98
3	Quantitative characterization of precipitate free zones in Al–Zn–Mg(–Ag) alloys by microchemical analysis and nanoindentation measurement. Science and Technology of Advanced Materials, 2004, 5, 491-496.	6.1	84
4	Relationship between intermetallic compound layer thickness with deviation and interfacial strength for dissimilar joints of aluminum alloy and stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 361-366.	5.6	60
5	A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag ₂ 0 microparticles. Journal of Physics: Conference Series, 2009, 165, 012074.	0.4	49
6	Effects of Microalloying Tin and Combined Addition of Silver and Tin on the Formation of Precipitate Free Zones and Mechanical Properties in Al-Zn-Mg Alloys. Materials Transactions, 2011, 52, 900-905.	1.2	36
7	Nanoindentation Measurement of Interfacial Reaction Layers in 6000 Series Aluminum Alloys and Steel Dissimilar Metal Joints with Alloying Elements. Materials Transactions, 2011, 52, 979-984.	1.2	33
8	Improvement of strength and ductility of an Al–Zn–Mg alloy by controlling grain size and precipitate microstructure with Mn and Ag addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 288-293.	5.6	33
9	Effects of Reducing Solvent on Copper, Nickel, and Aluminum Joining Using Silver Nanoparticles Derived from a Silver Oxide Paste. Materials Transactions, 2015, 56, 1030-1036.	1.2	33
10	Effect of PFZ and Grain Boundary Precipitate on Mechanical Properties and Fracture Morphologies in Al-Zn-Mg(Ag) Alloys. Materials Science Forum, 0, 638-642, 297-302.	0.3	32
11	Effects of Solvents in the Polyethylene Glycol Series on the Bonding of Copper Joints Using Ag2O Paste. Journal of Electronic Materials, 2013, 42, 507-515.	2.2	30
12	Joining of Pure Copper Using Cu Nanoparticles Derived from CuO Paste. Materials Transactions, 2015, 56, 992-996.	1.2	25
13	Low-temperature metal-to-alumina direct bonding process utilizing redox reaction between silver oxide and organic agent. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 398-405.	5.6	22
14	Interfacial Bonding Behavior between Silver Nanoparticles and Gold Substrate Using Molecular Dynamics Simulation. Materials Transactions, 2012, 53, 2085-2090.	1.2	21
15	Bondability of Copper Joints Formed Using a Mixed Paste of Ag ₂ O and CuO for Low-Temperature Sinter Bonding. Materials Transactions, 2013, 54, 860-865.	1.2	20
16	Effects of precipitate microstructures near grain boundaries on strength and ductility in Al-Zn-Mg (-Ag) alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 2006, 56, 644-650.	0.4	19
17	Characteristics and Estimation of Interfacial Microstructure with Additional Elements in Dissimilar Metal Joints of Aluminum Alloys to Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 174s-178s.	0.5	19
18	Microstructural control of interface and mechanical properties in dissimilar metal joining between aluminum alloy and steel. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 503-511.	0.4	17

#	Article	IF	CITATIONS
19	Effects of Au and Pd Additions on Joint Strength, Electrical Resistivity, and Ion-Migration Tolerance in Low-Temperature Sintering Bonding Using Ag2O Paste. Journal of Electronic Materials, 2012, 41, 2573-2579.	2.2	14
20	Microstructure and mechanical properties in laser brazing of A5052/AZ31 dissimilar alloys. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 1047-1054.	2.5	13
21	Improvement of joint strength in dissimilar friction welding of Ti-6Al-4V alloy to type-718 nickel-based alloy using the Au–Ni interlayer. Science and Technology of Welding and Joining, 2019, 24, 327-333.	3.1	12
22	Effect of Zn insertion on diffusion bonded joint properties of steel and aluminum alloy. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2014, 32, 15-30.	0.5	10
23	Effects of Alloying Copper and Silicon on the Bondability of Dissimilar Metal Joints of Aluminum Alloys to Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 187s-191s.	0.5	10
24	Effects of Zinc Insert and Al Content in Mg Alloy on the Bondability in Dissimilar Joints of Steel and Magnesium Alloys. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 183s-186s.	0.5	9
25	Low-current resistance spot welding of pure copper using silver oxide paste. Materials Characterization, 2014, 98, 186-192.	4.4	8
26	Dissimilar laser brazing of aluminum alloy and galvannealed steel and defect control using interlayer. Welding in the World, Le Soudage Dans Le Monde, 2020, 64, 697-706.	2.5	8
27	Effect of Polyethylene Glycols with Different Polymer Chain Lengths on the Bonding Process Involving <i>In Situ</i> Formation of Silver Nanoparticles from Ag ₂ O. Materials Transactions, 2013, 54, 866-871.	1.2	7
28	Dissimilar metals joining of steel and aluminum alloy by resistance spot welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2014, 32, 83-94.	0.5	7
29	Seal spot welding of steel and aluminium alloy by resistance spot welding: dissimilar metal joining of steel and aluminium alloy by Zn insertion. Welding International, 2016, 30, 675-687.	0.7	7
30	Relationship between ferrite–austenite phase transformation and precipitation behavior of sigma phase in super duplex stainless steel weldment. Welding in the World, Le Soudage Dans Le Monde, 2022, 66, 351-362.	2.5	7
31	Theoretical approach to influence of nitrogen on solidification cracking susceptibility of austenitic stainless steels: computer simulation of hot cracking by solidification/segregation models. Welding International, 2018, 32, 436-444.	0.7	6
32	Effect of Solute Elements on Solidification Cracking Susceptibility of Carbon Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 316-324.	0.5	6
33	Enhanced Age Hardening in an Al-Mg-Si Alloy Using High-Speed Compression. Materials Transactions, 2015, 56, 1058-1062.	1.2	5
34	Effect of high strain rate deformation on hydrogen desorption behavior of 6061 and 7075 aluminum alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 90-95.	0.4	5
35	Prediction of solidification cracking during arc welding of 310S stainless steel in U-type hot cracking test. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 68-75.	0.5	5
36	Fracture toughness and fatigue crack behaviour of A3003/SUS304 lap friction stir welded joints. Welding International, 2017, 31, 268-277.	0.7	4

#	Article	IF	CITATIONS
37	Numerical analysis on solidification cracking susceptibility of type 316 stainless steel considering solidification mode and morphology computer simulation of hot cracking by solidification/segregation models. Welding International, 2018, 32, 445-452.	0.7	4
38	Seal spot welding of steel and aluminum alloy by resistance spot welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2014, 32, 95-106.	0.5	3
39	Microscale Evaluation of Mechanical Properties and the Interfacial Microstructures of Friction Stir Welded Aluminum Alloy/Stainless Steel Dissimilar Lap Joints. Materials Science Forum, 0, 783-786, 2786-2791.	0.3	3
40	Dissimilar Metal Joining of A5052 Aluminum Alloy and AZ31 Magnesium Alloy Using Laser Brazing. Materials Science Forum, 0, 879, 2532-2536.	0.3	3
41	Effect of welding condition on solidification cracking behaviour in austenitic stainless steel. Science and Technology of Welding and Joining, 2021, 26, 84-90.	3.1	3
42	Effect of Impurity Elements on Solidification Cracking Susceptibility of High Manganese Austenitic Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 306-315.	0.5	3
43	Interfacial microstructure evolution and thermal reliability of copper/nickel joints formed by ultrasonic bonding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 192s-196s.	0.5	2
44	Improvement of asymmetry in a friction stir welded A3003/SUS 304 lap joint by double-pass process. Welding International, 2018, 32, 527-534.	0.7	2
45	Dissimilar Joining Techniques Between Aluminum Alloy and Steel with Controlled Interfacial Microstructures. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2016, 85, 593-598.	0.1	2
46	Dissimilar Joining Technique of Light Metals. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2018, 87, 16-21.	0.1	2
47	Hot cracking susceptibility of commercial filler metals for Alloy 617 by Varestraint test. Study of hot cracking of Alloy 617 in multipass welds. Welding International, 2019, 33, 166-178.	0.7	2
48	Characterization of Hot Cracking in Multi-Pass Weld Metal of High Manganese Austenitic Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 297-305.	0.5	2
49	Hot Cracking Susceptibility and Solidification Segregation Analysis by Computer Simulation in Duplex Stainless Steels. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 76-84.	0.5	2
50	Characterization of hot cracking in multi-pass weld metal of high manganese austenitic steel. Welding International, 2020, 34, 388-398.	0.7	2
51	Dominant factors of cryogenic toughness of heat-affected zone of welding in high Mn austenitic steel. Welding International, 2020, 34, 335-348.	0.7	2
52	Interfacial Reaction during Dissimilar Friction Stir Lap Welding of Aluminum Alloy to Stainless Steel. Materials Science Forum, 0, 794-796, 389-394.	0.3	1
53	Nano-scale microstructural analysis of aluminum alloys by three-dimensional atom probe. Keikinzoku/Journal of Japan Institute of Light Metals, 2014, 64, 542-550.	0.4	1
54	Fracture toughness and fatigue crack growth behavior of A3003/SUS304 lap friction stir welded joints. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 20-28.	0.5	1

#	Article	IF	CITATIONS
55	Ultrasonic bonding of Cu/Ni and its thermal reliability. Welding International, 2015, 29, 270-278.	0.7	1
56	A Method for Studying the Nano-Scale Stress-Strain Response of a Material by Nanoindentation. Materials Transactions, 2016, 57, 1006-1009.	1.2	1
57	Effects of Zn- and Mg-contents for increasing strength and ductility of Al–Zn–Mg alloys with trace Mn- and Ag-additions. Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69, 166-173.	0.4	1
58	Theoretical phase-field-method-based model of the \hat{I}^3 phase dissolution of base metals in duplex stainless steels. Materials Today Communications, 2021, 26, 102150.	1.9	1
59	Effect of heat dissipation on solidification cracking behaviour of austenitic stainless steel during gas tungsten arc welding. Science and Technology of Welding and Joining, 2021, 26, 455-460.	3.1	1
60	Prediction of reversible α/γ phase transformation in multi-pass weld of Fe-Cr-Ni ternary alloy by phase-field method. Journal of Advanced Joining Processes, 2021, 4, 100067.	2.7	1
61	Effect of Alloying Elements on Solidification Cracking Susceptibility of High Manganese Austenitic Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2021, 39, 87-96.	0.5	1
62	Effects of titanium interlayer on dissimilar joining between aluminum alloy and magnesium alloy using laser brazing. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2018, 36, 247-252.	0.5	1
63	Mechanical Characterization of Nano/microscale Structures by Nanoindentation Technique. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2012, 81, 671-676.	0.1	1
64	Selection of Particle Size and Solvent to Lower the Pressure Required for Metal-to-Metal Bonding using Silver Nanoparticle Pastes. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 197s-201s.	0.5	1
65	Joint Strength Improvement in Dissimilar Friction Welding of Titanium Alloy to Nickel Alloy with Interlayer. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 79s-83s.	0.5	1
66	Development of aluminum alloy/galvanized steel joining method using refill friction stir spot welding. Welding International, 2022, 36, 370-378.	0.7	1
67	Enhanced age hardening in an Al–Mg–Si alloy using high-speed compression. Keikinzoku/Journal of Japan Institute of Light Metals, 2015, 65, 498-502.	0.4	0
68	Enhanced properties of aluminum alloys using high strain rate deformation. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 192-199.	0.4	0
69	Joining of pure copper using Cu nanoparticles derived from CuO paste. , 2016, , .		0
70	Decrease in Process Pressure for Forming Au-to-Au Joints via Reduction Reaction of Ag ₂ O. Materials Transactions, 2017, 58, 127-130.	1.2	0
71	Hot cracking susceptibility and solidiï¬cation segregation analysis by computer simulation in duplex stainless steels. Welding International, 2019, 33, 231-240.	0.7	0
72	Change in Charpy Impact Toughness and Carbide Precipitation after Aging Heat Treatment of High Mn Austenitic Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 199-210.	0.5	0

#	Article	IF	CITATIONS
73	Dominant Factors of Cryogenic Toughness of Heat Affected Zone of Welding in High Mn Austenitic Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2020, 38, 211-221.	0.5	о
74	Change in Charpy impact toughness and carbide precipitation after ageing heat treatment of high Mn austenitic steel. Welding International, 2020, 34, 314-328.	0.7	0