
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/854760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology. Nature Catalysis, 2018, 1, 787-793.	34.4	300
2	Confinement Effect and Synergistic Function of H-ZSM-5/Cu-ZnO-Al ₂ O ₃ Capsule Catalyst for One-Step Controlled Synthesis. Journal of the American Chemical Society, 2010, 132, 8129-8136.	13.7	263
3	A Core/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in a Consecutive Reaction. Angewandte Chemie - International Edition, 2008, 47, 353-356.	13.8	239
4	Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions. ACS Catalysis, 2019, 9, 3026-3053.	11.2	238
5	Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO ₂ Hydrogenation Producing Value-Added Aromatics. ACS Catalysis, 2019, 9, 895-901.	11.2	236
6	Catalysis Chemistry of Dimethyl Ether Synthesis. ACS Catalysis, 2014, 4, 3346-3356.	11.2	232
7	Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9, 3250.	12.8	186
8	Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental, 2017, 217, 494-522.	20.2	181
9	One-pass selective conversion of syngas to <i>para</i> -xylene. Chemical Science, 2017, 8, 7941-7946.	7.4	154
10	Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Applied Catalysis A: General, 2010, 385, 92-100.	4.3	147
11	Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C ₂₊ hydrocarbons. Journal of Materials Chemistry A, 2018, 6, 23244-23262.	10.3	144
12	Confinement Effect of Carbon Nanotubes: Copper Nanoparticles Filled Carbon Nanotubes for Hydrogenation of Methyl Acetate. ACS Catalysis, 2012, 2, 1958-1966.	11.2	138
13	An Introduction of CO ₂ Conversion by Dry Reforming with Methane and New Route of Low-Temperature Methanol Synthesis. Accounts of Chemical Research, 2013, 46, 1838-1847.	15.6	137
14	Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst. Applied Catalysis B: Environmental, 2020, 264, 118522.	20.2	136
15	A New Method of Low-Temperature Methanol Synthesis. Journal of Catalysis, 2001, 197, 224-227.	6.2	130
16	One-step synthesis of H–β zeolite-enwrapped Co/Al2O3 Fischer–Tropsch catalyst with high spatial selectivity. Journal of Catalysis, 2009, 265, 26-34.	6.2	126
17	Monodispersed Hollow SO ₃ H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid. ACS Applied Materials & Interfaces, 2015, 7, 26767-26775.	8.0	124
18	Multiple-Functional Capsule Catalysts: A Tailor-Made Confined Reaction Environment for the Direct Synthesis of Middle Isoparaffins from Syngas. Chemistry - A European Journal, 2006, 12, 8296-8304.	3.3	121

#	Article	IF	CITATIONS
19	Designing a Capsule Catalyst and Its Application for Direct Synthesis of Middle Isoparaffins. Langmuir, 2005, 21, 1699-1702.	3.5	120
20	Effect of catalytic site position: Nickel nanocatalyst selectively loaded inside or outside carbon nanotubes for methane dry reforming. Fuel, 2013, 108, 430-438.	6.4	120
21	Direct Synthesis of Ethanol from Dimethyl Ether and Syngas over Combined Hâ€Mordenite and Cu/ZnO Catalysts. ChemSusChem, 2010, 3, 1192-1199.	6.8	118
22	New Synthesis Method of Ethanol from Dimethyl Ether with a Synergic Effect between the Zeolite Catalyst and Metallic Catalyst. Energy & Fuels, 2009, 23, 2843-2844.	5.1	107
23	Tandem catalytic synthesis of light isoparaffin from syngas via Fischer–Tropsch synthesis by newly developed core–shell-like zeolite capsule catalysts. Catalysis Today, 2013, 215, 29-35.	4.4	106
24	Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway. Applied Catalysis B: Environmental, 2020, 269, 118792.	20.2	106
25	Highly-Dispersed Metallic Ru Nanoparticles Sputtered on H-Beta Zeolite for Directly Converting Syngas to Middle Isoparaffins. ACS Catalysis, 2014, 4, 1-8.	11.2	98
26	Design of a core–shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Chemical Science, 2020, 11, 4097-4105.	7.4	95
27	Direct and Oriented Conversion of CO ₂ into Valueâ€Added Aromatics. Chemistry - A European Journal, 2019, 25, 5149-5153.	3.3	89
28	Designing core (Cu/ZnO/Al2O3)–shell (SAPO-11) zeolite capsule catalyst with a facile physical way for dimethyl ether direct synthesis from syngas. Chemical Engineering Journal, 2015, 270, 605-611.	12.7	88
29	De-NOx in alternative lean/rich atmospheres on La1â^'xSrxCoO3 perovskites. Energy and Environmental Science, 2011, 4, 3351.	30.8	87
30	Facilely Synthesized H-Mordenite Nanosheet Assembly for Carbonylation of Dimethyl Ether. ACS Applied Materials & Interfaces, 2015, 7, 8398-8403.	8.0	86
31	Methane reforming with carbon dioxide over mesoporous nickel–alumina composite catalyst. Chemical Engineering Journal, 2013, 221, 25-31.	12.7	85
32	Metal 3D printing technology for functional integration of catalytic system. Nature Communications, 2020, 11, 4098.	12.8	82
33	Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins. Applied Catalysis A: General, 2007, 329, 99-105.	4.3	78
34	Carbon dioxide reforming of methane over Ni nanoparticles incorporated into mesoporous amorphous ZrO 2 matrix. Fuel, 2015, 147, 243-252.	6.4	78
35	Ordered mesoporous alumina-supported bimetallic Pd–Ni catalysts for methane dry reforming reaction. Catalysis Science and Technology, 2016, 6, 6542-6550.	4.1	73
36	Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts. Applied Catalysis A: General, 2015, 505, 141-149.	4.3	69

#	Article	IF	CITATIONS
37	Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation. Fuel Processing Technology, 2019, 196, 106174.	7.2	69
38	Direct Conversion of CO ₂ to Ethanol Boosted by Intimacy-Sensitive Multifunctional Catalysts. ACS Catalysis, 2021, 11, 11742-11753.	11.2	69
39	A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts. Catalysis Today, 2011, 164, 425-428.	4.4	66
40	Controllable encapsulation of cobalt clusters inside carbon nanotubes as effective catalysts for Fischer–Tropsch synthesis. Catalysis Today, 2013, 215, 24-28.	4.4	66
41	A double-shell capsule catalyst with core–shell-like structure for one-step exactly controlled synthesis of dimethyl ether from CO2 containing syngas. Catalysis Today, 2011, 171, 229-235.	4.4	65
42	Freezing copper as a noble metal–like catalyst for preliminary hydrogenation. Science Advances, 2018, 4, eaau3275.	10.3	64
43	Highly Ordered Mesoporous Fe ₂ O ₃ –ZrO ₂ Bimetal Oxides for an Enhanced CO Hydrogenation Activity to Hydrocarbons with Their Structural Stability. ACS Catalysis, 2017, 7, 5955-5964.	11.2	63
44	Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis. Fuel Processing Technology, 2009, 90, 446-451.	7.2	60
45	Effects of Fe dopants and residual carbonates on the catalytic activities of the perovskite-type La0.7Sr0.3Co1â^Fe O3 NO storage catalyst. Applied Catalysis B: Environmental, 2014, 146, 24-34.	20.2	60
46	A new core–shell-like capsule catalyst with SAPO-46 zeolite shell encapsulated Cr/ZnO for the controlled tandem synthesis of dimethyl ether from syngas. Fuel, 2013, 111, 727-732.	6.4	59
47	A hollow Mo/HZSM-5 zeolite capsule catalyst: preparation and enhanced catalytic properties in methane dehydroaromatization. Journal of Materials Chemistry A, 2017, 5, 8599-8607.	10.3	59
48	Continuous Low-Temperature Methanol Synthesis from Syngas Using Alcohol Promoters. Energy & Fuels, 2003, 17, 817-821.	5.1	58
49	Cation modulating electrocatalyst derived from bimetallic metal–organic frameworks for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 6170-6177.	10.3	58
50	Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2019, 248, 73-83.	20.2	58
51	Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Chemical Science, 2019, 10, 2578-2584.	7.4	56
52	H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas. Applied Catalysis A: General, 2011, 394, 195-200.	4.3	55
53	Development of bimodal cobalt catalysts for Fischer–Tropsch synthesis. Catalysis Today, 2004, 93-95, 55-63.	4.4	53
54	Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis. AICHE Journal, 2005, 51, 2068-2076.	3.6	52

#	Article	IF	CITATIONS
55	Surface Impregnation Combustion Method to Prepare Nanostructured Metallic Catalysts without Further Reduction: As-Burnt Co/SiO ₂ Catalysts for Fischer–Tropsch Synthesis. ACS Catalysis, 2011, 1, 1225-1233.	11.2	52
56	A brand new zeolite catalyst for carbonylation reaction. Chemical Communications, 2019, 55, 1048-1051.	4.1	52
57	Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis. Chemical Communications, 2012, 48, 1263-1265.	4.1	51
58	Methane decomposition and carbon deposition over Ni/ZrO2 catalysts: Comparison of amorphous, tetragonal, and monoclinic zirconia phase. International Journal of Hydrogen Energy, 2019, 44, 17887-17899.	7.1	51
59	A Kinetic Study on Biomass Fast Catalytic Pyrolysis. Energy & Fuels, 2004, 18, 1865-1869.	5.1	50
60	Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts. Applied Catalysis A: General, 2005, 288, 126-133.	4.3	50
61	Study on the preparation of Cu/ZnO catalyst by sol–gel auto-combustion method and its application for low-temperature methanol synthesis. Applied Catalysis A: General, 2011, 401, 46-55.	4.3	49
62	Ternary copper–cobalt–cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation. Applied Catalysis A: General, 2016, 514, 14-23.	4.3	49
63	Activating and optimizing the MoS2@MoO3 S-scheme heterojunction catalyst through interface engineering to form a sulfur-rich surface for photocatalyst hydrogen evolution. Chemical Engineering Journal, 2022, 438, 135238.	12.7	49
64	Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018, 334, 714-724.	12.7	48
65	Selective Synthesis of Middle Isoparaffins via a Two-Stage Fischerâ^'Tropsch Reaction:Â Activity Investigation for a Hybrid Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 769-775.	3.7	47
66	Synergistic Effect of a Boronâ€Doped Carbonâ€Nanotubeâ€Supported Cu Catalyst for Selective Hydrogenation of Dimethyl Oxalate to Ethanol. Chemistry - A European Journal, 2017, 23, 8252-8261.	3.3	47
67	Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis. Carbon, 2018, 130, 304-314.	10.3	47
68	Continuous synthesis process of methanol at low temperature from syngas using alcohol promoters. Catalysis Communications, 2001, 2, 213-217.	3.3	45
69	Active and regioselective rhodium catalyst supported on reduced graphene oxide for 1-hexene hydroformylation. Catalysis Science and Technology, 2016, 6, 1162-1172.	4.1	45
70	Preparation and application of Cu/ZnO catalyst by urea hydrolysis method for low-temperature methanol synthesis from syngas. Fuel Processing Technology, 2017, 167, 69-77.	7.2	44
71	Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation. Catalysis Communications, 2007, 8, 1711-1714.	3.3	43
72	Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy & Fuels, 2008, 22, 1463-1468.	5.1	43

#	Article	IF	CITATIONS
73	Fabrication of active Cu–Zn nanoalloys on H-ZSM5 zeolite for enhanced dimethyl ether synthesis via syngas. Journal of Materials Chemistry A, 2014, 2, 8637.	10.3	43
74	Novel Ethanol Synthesis Method via C1 Chemicals without Any Agriculture Feedstocks. Industrial & Engineering Chemistry Research, 2010, 49, 5485-5488.	3.7	42
75	Ethanol direct synthesis from dimethyl ether and syngas on the combination of noble metal impregnated zeolite with Cu/ZnO catalyst. Catalysis Today, 2014, 232, 22-26.	4.4	42
76	Selective formation of linear-alpha olefins (LAOs) by CO2 hydrogenation over bimetallic Fe/Co-Y catalyst. Catalysis Communications, 2019, 130, 105759.	3.3	42
77	Low-temperature direct conversion of methane to methanol over carbon materials supported Pd-Au nanoparticles. Catalysis Today, 2020, 339, 48-53.	4.4	42
78	Capsule-like zeolite catalyst fabricated by solvent-free strategy for para-Xylene formation from CO2 hydrogenation. Applied Catalysis B: Environmental, 2022, 303, 120906.	20.2	42
79	Synthesis of novel intumescent flame retardant containing phosphorus, nitrogen and boron and its application in polyethylene. Polymer Bulletin, 2015, 72, 2967-2978.	3.3	41
80	A New Low-Temperature Synthesis Route of Methanol:  Catalytic Effect of the Alcoholic Solvent. Energy & Fuels, 2002, 16, 83-86.	5.1	40
81	Promotional SMSI Effect on Supported Palladium Catalysts for Methanol Synthesis. Topics in Catalysis, 2003, 22, 325-335.	2.8	40
82	Formic acid directly assisted solid-state synthesis of metallic catalysts without further reduction: As-prepared Cu/ZnO catalysts for low-temperature methanol synthesis. Journal of Catalysis, 2013, 302, 83-90.	6.2	40
83	Nanoparticle modified Ni-based bimodal pore catalysts for enhanced CO ₂ methanation. RSC Advances, 2014, 4, 64617-64624.	3.6	40
84	One-Pot Hydrothermal Synthesis of Nitrogen Functionalized Carbonaceous Material Catalysts with Embedded Iron Nanoparticles for CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8331-8339.	6.7	40
85	FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation. Applied Catalysis B: Environmental, 2022, 300, 120713.	20.2	40
86	Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chemical Society Reviews, 2022, 51, 5606-5659.	38.1	40
87	Product control in Fischer–Tropsch synthesis. Fuel Processing Technology, 2000, 62, 173-186.	7.2	38
88	The role of different state ZnO over non-stoichiometric Zn–Cr spinel catalysts for isobutanol synthesis from syngas. Applied Catalysis A: General, 2017, 536, 57-66.	4.3	38
89	Beyond Cars: Fischerâ€Tropsch Synthesis for Nonâ€Automotive Applications. ChemCatChem, 2019, 11, 1412-1424.	3.7	38
90	Vapor-phase low-temperature methanol synthesis from CO2-containing syngas via self-catalysis of methanol and Cu/ZnO catalysts prepared by solid-state method. Applied Catalysis B: Environmental, 2020, 279, 119382.	20.2	38

#	Article	IF	CITATIONS
91	Spinel-structure catalyst catalyzing CO ₂ hydrogenation to full spectrum alkenes with an ultra-high yield. Chemical Communications, 2020, 56, 9372-9375.	4.1	38
92	A sol–gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis. Catalysis Science and Technology, 2012, 2, 2569.	4.1	37
93	Insight into solvent-free synthesis of MOR zeolite and its laboratory scale production. Microporous and Mesoporous Materials, 2019, 280, 187-194.	4.4	37
94	Space-Confined Self-Regulation Mechanism from a Capsule Catalyst to Realize an Ethanol Direct Synthesis Strategy. ACS Catalysis, 2020, 10, 1366-1374.	11.2	37
95	Spatially separated catalytic sites supplied with the CdS–MoS ₂ –In ₂ O ₃ ternary dumbbell S-scheme heterojunction for enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2022, 10, 10715-10728.	10.3	37
96	Probing the promotional roles of cerium in the structure and performance of Cu/SiO ₂ catalysts for ethanol production. Catalysis Science and Technology, 2018, 8, 6441-6451.	4.1	36
97	Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts. Nature Communications, 2021, 12, 7209.	12.8	36
98	Preparation of alumina?silica bimodal pore catalysts for Fischer-Tropsch synthesis. Catalysis Letters, 2005, 99, 193-198.	2.6	35
99	Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface. Applied Energy, 2018, 209, 1-7.	10.1	35
100	A facile ethanol fuel synthesis from dimethyl ether and syngas over tandem combination of Cu-doped HZSM35 with Cu-Zn-Al catalyst. Chemical Engineering Journal, 2017, 316, 832-841.	12.7	34
101	Probing Hydrophobization of a Cu/ZnO Catalyst for Suppression of Water–Gas Shift Reaction in Syngas Conversion. ACS Catalysis, 2021, 11, 4633-4643.	11.2	34
102	Zeolitic Imidazolate Framework-67-Derived P-Doped Hollow Porous Co ₃ O ₄ as a Photocatalyst for Hydrogen Production from Water. ACS Applied Materials & Interfaces, 2021, 13, 50996-51007.	8.0	34
103	Filter and buffer-pot confinement effect of hollow sphere catalyst for promoted activity and enhanced selectivity. Journal of Materials Chemistry A, 2013, 1, 5670.	10.3	33
104	Designing a novel Ni–Al2O3–SiC catalyst with a stereo structure for the combined methane conversion process to effectively produce syngas. Catalysis Today, 2016, 265, 36-44.	4.4	33
105	Enhanced Liquid Fuel Production from CO ₂ Hydrogenation: Catalytic Performance of Bimetallic Catalysts over a Twoâ€Stage Reactor System. ChemistrySelect, 2018, 3, 13705-13711.	1.5	33
106	Efficient and New Production Methods of Chemicals and Liquid Fuels by Carbon Monoxide Hydrogenation. ACS Omega, 2020, 5, 49-56.	3.5	33
107	Selective Conversion of CO ₂ into <i>para</i> â€Xylene over a ZnCr ₂ O ₄ â€ZSMâ€5 Catalyst. ChemSusChem, 2020, 13, 6541-6545.	6.8	33
108	Combining wet impregnation and dry sputtering to prepare highly-active CoPd/H-ZSM5 ternary catalysts applied for tandem catalytic synthesis of isoparaffins. Catalysis Science and Technology, 2014, 4, 1260.	4.1	32

#	Article	IF	CITATIONS
109	Pt Nanoparticles Loaded on Reduced Graphene Oxide as an Effective Catalyst for the Direct Oxidation of 5-Hydroxymethylfurfural (HMF) to Produce 2,5-Furandicarboxylic Acid (FDCA) under Mild Conditions. Bulletin of the Chemical Society of Japan, 2014, 87, 1124-1129.	3.2	32
110	Facile solid-state synthesis of Cu–Zn–O catalysts for novel ethanol synthesis from dimethyl ether (DME) and syngas (CO+H2). Fuel, 2013, 109, 54-60.	6.4	31
111	Bifunctional Capsule Catalyst of Al ₂ O ₃ @Cu with Strengthened Dehydration Reaction Field for Direct Synthesis of Dimethyl Ether from Syngas. Industrial & Engineering Chemistry Research, 2019, 58, 22905-22911.	3.7	31
112	Structure–Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 8191-8205.	8.0	31
113	A Catalyst for Oneâ€step Isoparaffin Production via Fischer–Tropsch Synthesis: Growth of a Hâ€Mordenite Shell Encapsulating a Fused Iron Core. ChemCatChem, 2013, 5, 3101-3106.	3.7	30
114	One-Pot Transformation of Cellulose to Sugar Alcohols over Acidic Metal Phosphates Combined with Ru/C. Industrial & Engineering Chemistry Research, 2014, 53, 12655-12664.	3.7	30
115	Development of dual-membrane coated Fe/SiO2 catalyst for efficient synthesis of isoparaffins directly from syngas. Journal of Membrane Science, 2015, 475, 22-29.	8.2	30
116	Enhancing catalytic performance of activated carbon supported Rh catalyst on heterogeneous hydroformylation of 1-hexene via introducing surface oxygen-containing groups. Applied Catalysis A: General, 2016, 527, 53-59.	4.3	30
117	Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO ₂ to gasoline. Catalysis Science and Technology, 2019, 9, 5401-5412.	4.1	30
118	Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3–SnO2 catalyst under mild conditions. Green Chemistry, 2013, 15, 1501.	9.0	29
119	Tunable isoparaffin and olefin yields in Fischer–Tropsch synthesis achieved by a novel iron-based micro-capsule catalyst. Catalysis Today, 2015, 251, 41-46.	4.4	29
120	Dimethyl ether carbonylation to methyl acetate over highly crystalline zeolite seed-derived ferrierite. Catalysis Science and Technology, 2018, 8, 3060-3072.	4.1	29
121	Thermocatalytic hydrogenation of <scp>CO₂</scp> into aromatics by tailorâ€made catalysts: Recent advancements and perspectives. EcoMat, 2021, 3, e12080.	11.9	29
122	Highly Efficient Alcohol Oxidation on Nanoporous VSBâ€5 Nickel Phosphate Catalyst Functionalized by NaOH Treatment. ChemCatChem, 2011, 3, 684-689.	3.7	28
123	Design of an Autoreduced Copper in Carbon Nanotube Catalyst to Realize the Precisely Selective Hydrogenation of Dimethyl Oxalate. ChemCatChem, 2017, 9, 1067-1075.	3.7	28
124	Designing a novel dual bed reactor to realize efficient ethanol synthesis from dimethyl ether and syngas. Catalysis Science and Technology, 2018, 8, 2087-2097.	4.1	28
125	Copper–iron supported bimodal pore catalyst and its application for higher alcohols synthesis. Catalysis Today, 2014, 234, 278-284.	4.4	27
126	Tandem catalytic synthesis of benzene from CO ₂ and H ₂ . Catalysis Science and Technology, 2017, 7, 2695-2699.	4.1	27

#	Article	IF	CITATIONS
127	Topologically immobilized catalysis centre for long-term stable carbon dioxide reforming of methane. Chemical Science, 2019, 10, 3701-3705.	7.4	27
128	Urea-derived Cu/ZnO catalyst being dried by supercritical CO2 for low-temperature methanol synthesis. Fuel, 2020, 268, 117213.	6.4	27
129	Heteroatom doped iron-based catalysts prepared by urea self-combustion method for efficient CO2 hydrogenation. Fuel, 2020, 276, 118102.	6.4	27
130	A New Preparation Method of Bimodal Catalyst Support and Its Application in Fischer–Tropsch Synthesis. Topics in Catalysis, 2003, 26, 129-137.	2.8	26
131	The mechanism of higher alcohol formation on ZrO2-based catalyst from syngas. Korean Journal of Chemical Engineering, 2015, 32, 406-412.	2.7	26
132	SO3H-modified petroleum coke derived porous carbon as an efficient solid acid catalyst for esterification of oleic acid. Journal of Porous Materials, 2016, 23, 263-271.	2.6	26
133	Synthesis of Polyoxymethylene Dimethyl Ethers from Dimethyl Ether Direct Oxidation over Carbonâ€Based Catalysts. ChemCatChem, 2018, 10, 273-279.	3.7	26
134	Boosting liquid hydrocarbons selectivity from CO2 hydrogenation by facilely tailoring surface acid properties of zeolite via a modified Fischer-Tropsch synthesis. Fuel, 2021, 306, 121684.	6.4	26
135	A Capsule Catalyst with a Zeolite Membrane Prepared by Direct Liquid Membrane Crystallization. ChemSusChem, 2012, 5, 862-866.	6.8	25
136	Oriented synthesis of target products in liquid-phase tandem reaction over a tripartite zeolite capsule catalyst. Chemical Science, 2013, 4, 3958.	7.4	25
137	Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances. Scientific Reports, 2013, 3, 2813.	3.3	25
138	Ruthenium promoted cobalt catalysts prepared by an autocombustion method directly used for Fischer–Tropsch synthesis without further reduction. Catalysis Science and Technology, 2014, 4, 3099.	4.1	25
139	Nitrogen-doped graphene nanosheets as metal-free catalysts for dehydrogenation reaction of ethanol. RSC Advances, 2016, 6, 13450-13455.	3.6	25
140	Mn–Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor. RSC Advances, 2018, 8, 14854-14863.	3.6	25
141	Mixed Alcohol Synthesis from Syngas on K–Co–Mo/C Catalyst Prepared by a Sol–Gel Method. Topics in Catalysis, 2009, 52, 789-794.	2.8	24
142	Sol–gel auto-combustion synthesis of Ni–CexZr1â^'xO2 catalysts for carbon dioxide reforming of methane. RSC Advances, 2013, 3, 22285.	3.6	24
143	Design of a Hierarchical Meso/Macroporous Zeolite‣upported Cobalt Catalyst for the Enhanced Direct Synthesis of Isoparaffins from Syngas. ChemCatChem, 2015, 7, 682-689.	3.7	23
144	A Wellâ€Defined Core–Shell‣tructured Capsule Catalyst for Direct Conversion of CO ₂ into Liquefied Petroleum Gas. ChemSusChem, 2020, 13, 2060-2065.	6.8	23

#	Article	IF	CITATIONS
145	The promoting effect of alcohols in a new process of low-temperature synthesis of methanol from CO/CO2/H2. Fuel, 2002, 81, 125-127.	6.4	22
146	Highly Dispersed Mo ₂ C Anchored on N,P odoped Graphene as Efficient Electrocatalyst for Hydrogen Evolution Reaction. ChemCatChem, 2018, 10, 2300-2304.	3.7	22
147	Multi-Promoters Regulated Iron Catalyst with Well-Matching Reverse Water-Gas Shift and Chain Propagation for Boosting CO2 Hydrogenation. Journal of CO2 Utilization, 2021, 52, 101700.	6.8	22
148	MoP@MoO ₃ S-scheme heterojunction <i>in situ</i> construction with phosphating MoO ₃ for high-efficient photocatalytic hydrogen production. Nanoscale, 2021, 13, 18507-18519.	5.6	22
149	Structural and kinetical studies on the supercritical CO2 dried Cu/ZnO catalyst for low-temperature methanol synthesis. Chemical Engineering Journal, 2016, 295, 160-166.	12.7	21
150	Designing a hierarchical nanosheet ZSM-35 zeolite to realize more efficient ethanol synthesis from dimethyl ether and syngas. Catalysis Today, 2020, 343, 206-214.	4.4	21
151	A New Method of Low Temperature Methanol Synthesis. Catalysis Surveys From Asia, 2009, 13, 147-163.	2.6	20
152	A Solidâ€State Combustion Method towards Metallic Cu–ZnO Catalyst without Further Reduction and its Application to Lowâ€Temperature Methanol Synthesis. ChemCatChem, 2012, 4, 863-871.	3.7	20
153	Surface impregnation combustion method to prepare nanostructured metallic catalysts without further reduction: As-burnt Cu–ZnO/SiO2 catalyst for low-temperature methanol synthesis. Catalysis Today, 2012, 185, 54-60.	4.4	20
154	Mesoporous SiO2-confined La0.7Sr0.3CoO3 perovskite nanoparticles: an efficient NOx adsorber for lean-burn exhausts. Catalysis Science and Technology, 2013, 3, 1493.	4.1	20
155	Design and Synthesis of Powerful Capsule Catalysts Aimed at Applications in C1 Chemistry and Biomass Conversion. Chemical Record, 2018, 18, 4-19.	5.8	20
156	Highly selective synthesis of methanol from methane over carbon materials supported Pd-Au nanoparticles under mild conditions. Catalysis Today, 2020, 352, 104-110.	4.4	20
157	Fabricating Fe Nanoparticles Embedded in Zeolite Y Microcrystals as Active Catalysts for Fischer–Tropsch Synthesis. ACS Applied Nano Materials, 2020, 3, 8096-8103.	5.0	20
158	Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design. EnergyChem, 2020, 2, 100038.	19.1	20
159	Hierarchical nano-sized ZnZr-Silicalite-1 multifunctional catalyst for selective conversion of ethanol to butadiene. Applied Catalysis B: Environmental, 2022, 301, 120822.	20.2	20
160	Amorphous/crystalline heterojunction interface driving the spatial separation of charge carriers for efficient photocatalytic hydrogen evolution. Materials Today Physics, 2022, 27, 100767.	6.0	20
161	Preparation of hierarchically meso-macroporous hematite Fe2O3 using PMMA as imprint template and its reaction performance for Fischer–Tropsch synthesis. Catalysis Communications, 2011, 13, 44-48.	3.3	19
162	Effects of the MoO ₃ structure of Mo–Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions. Green Chemistry, 2015, 17, 1057-1064.	9.0	19

#	Article	IF	CITATIONS
163	Building premium secondary reaction field with a miniaturized capsule catalyst to realize efficient synthesis of a liquid fuel directly from syngas. Catalysis Science and Technology, 2017, 7, 1996-2000.	4.1	19
164	Direct synthesis of liquefied petroleum gas from syngas over H-ZSM-5 enwrapped Pd-based zeolite capsule catalyst. Catalysis Today, 2018, 303, 77-85.	4.4	19
165	Hydroformylation of 1-Hexene over Co/SiO2 Catalysts: Influence of Pore Size of Support Journal of Chemical Engineering of Japan, 2001, 34, 1366-1372.	0.6	18
166	Effects of tetrahedral molybdenum oxide species and MoO _x domains on the selective oxidation of dimethyl ether under mild conditions. Catalysis Science and Technology, 2016, 6, 2975-2983.	4.1	18
167	A Carbonylation Zeolite with Specific Nanosheet Structure for Efficient Catalysis. ACS Nano, 2021, 15, 13568-13578.	14.6	18
168	Boosting the synthesis of value-added aromatics directly from syngas <i>via</i> a Cr ₂ O ₃ and Ga doped zeolite capsule catalyst. Chemical Science, 2021, 12, 7786-7792.	7.4	18
169	Characteristic Feature of Co/SiO2 Catalysts for Slurry Phase Fischer-Tropsch Synthesis Journal of Chemical Engineering of Japan, 2000, 33, 232-238.	0.6	18
170	Direct Conversion of CO ₂ to Aromatics over K–Zn–Fe/ZSM-5 Catalysts via a Fischer–Tropsch Synthesis Pathway. Industrial & Engineering Chemistry Research, 2022, 61, 10336-10346.	3.7	18
171	Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion. ACS Central Science, 2022, 8, 1047-1062.	11.3	18
172	Hydroformylation of 1-Hexene on Silicalite-1 Zeolite Membrane Coated Pd–Co/A.C. Catalyst. Topics in Catalysis, 2010, 53, 608-614.	2.8	17
173	Green Synthesis of Rice Bran Microsphere Catalysts Containing Natural Biopromoters. ChemCatChem, 2015, 7, 1642-1645.	3.7	17
174	An in-situ synthesis of low-cost mesostructured nickel nanoparticles embedded carbon/silica composite via a solid–liquid grinding route and its application for the carbon dioxide reforming of methane. International Journal of Hydrogen Energy, 2016, 41, 10680-10687.	7.1	17
175	Influence of hydrothermal synthesis temperature on the redox and oxygen mobility properties of manganese oxides in the catalytic oxidation of toluene. Transition Metal Chemistry, 2019, 44, 663-670.	1.4	17
176	Structure and surface characteristics of Fe-promoted Ni/Al ₂ O ₃ catalysts for hydrogenation of 1,4-butynediol to 1,4-butenediol in a slurry-bed reactor. Catalysis Science and Technology, 2019, 9, 6598-6605.	4.1	17
177	Effects of mordenite zeolite catalyst synthesis conditions on dimethyl ether carbonylation. Microporous and Mesoporous Materials, 2020, 306, 110431.	4.4	17
178	Quick microwave assembling nitrogen-regulated graphene supported iron nanoparticles for Fischer-Tropsch synthesis. Chemical Engineering Journal, 2022, 429, 132063.	12.7	17
179	Enhanced performance and stability of Cu/ZnO catalyst by introducing MgO for low-temperature methanol synthesis using methanol itself as catalytic promoter. Fuel, 2022, 315, 123272.	6.4	17
180	Application of modified CNTs with Ti(SO ₄) ₂ in selective oxidation of dimethyl ether. Catalysis Science and Technology, 2016, 6, 7193-7202.	4.1	16

#	Article	lF	CITATIONS
181	Synthesis and properties of a new halogen-free flame-retardant epoxy resin curing agent. High Performance Polymers, 2016, 28, 110-118.	1.8	16
182	Effects of surface hydroxyl groups induced by the co-precipitation temperature on the catalytic performance of direct synthesis of isobutanol from syngas. Fuel, 2019, 237, 1021-1028.	6.4	16
183	Preparation, structure and performance of TS-1 zeolite-coated Au–Pd/TiO2–SiO2 capsule catalyst for propylene epoxidation with oxygen and hydrogen. Research on Chemical Intermediates, 2011, 37, 177-184.	2.7	15
184	An efficient microcapsule catalyst for one-step ethanol synthesis from dimethyl ether and syngas. Fuel, 2021, 283, 118971.	6.4	15
185	Catalytic oligomerization of isobutyl alcohol to jet fuels over dealuminated zeolite Beta. Catalysis Today, 2021, 368, 196-203.	4.4	15
186	Insights into the synergistic effect of active centers over ZnMg/SBA-15 catalysts in direct synthesis of butadiene from ethanol. Reaction Chemistry and Engineering, 2021, 6, 548-558.	3.7	14
187	One-Pot Hydrothermal Synthesis of Multifunctional ZnZrTUD-1 Catalysts for Highly Efficient Direct Synthesis of Butadiene from Ethanol. ACS Sustainable Chemistry and Engineering, 2021, 9, 10569-10578.	6.7	14
188	Transformation of LPG to light olefins on composite HZSM-5/SAPO-5. New Journal of Chemistry, 2021, 45, 4860-4866.	2.8	14
189	Interaction Between Polymer Chains Covalently Fixed to Single-Walled Carbon Nanotubes. Macromolecular Chemistry and Physics, 2006, 207, 812-819.	2.2	13
190	LDH-Derived (CuZn) <i>_x</i> Al <i>_y</i> Bifunctional Catalyst for Direct Synthesis of Dimethyl Ether from Syngas. Industrial & Engineering Chemistry Research, 2020, 59, 11087-11097.	3.7	13
191	Iron catalysts supported on nitrogen functionalized carbon for improved CO2 hydrogenation performance. Catalysis Communications, 2021, 149, 106216.	3.3	13
192	Etching C ₆ CoK ₃ N ₆ -induced ZnCdS for improved hydrogen evolution. Sustainable Energy and Fuels, 2022, 6, 408-419.	4.9	13
193	Effects of MoO ₃ crystalline structure of MoO ₃ –SnO ₂ catalysts on selective oxidation of glycol dimethyl ether to 1,2-propandiol. Catalysis Science and Technology, 2016, 6, 1842-1849.	4.1	12
194	Selectively Converting Biomass to Jet Fuel in Largeâ€scale Apparatus. ChemCatChem, 2017, 9, 2668-2674.	3.7	12
195	Active Fischer-Tropsch synthesis Fe-Cu-K/SiO 2 catalysts prepared by autocombustion method without a reduction step. Journal of Energy Chemistry, 2018, 27, 432-438.	12.9	12
196	Rational design of syngas to isoparaffins reaction route over additive dehydrogenation catalyst in a triple-bed system. Catalysis Communications, 2019, 131, 105799.	3.3	12
197	Ammonia pools in zeolites for direct fabrication of catalytic centers. Nature Communications, 2022, 13, 935.	12.8	12
198	Synthesis of Thianthrene Derivatives Linked by Carbon Chains. Synthesis, 2013, 46, 42-48.	2.3	11

#	Article	lF	CITATIONS
199	Direct fabrication of catalytically active Fe _x C sites by sol–gel autocombustion for preparing Fischer–Tropsch synthesis catalysts without reduction. Catalysis Science and Technology, 2016, 6, 7597-7603.	4.1	11
200	Comparison of support synthesis methods for TiO ₂ and the effects of surface sulfates on its activity toward NH ₃ -SCR. New Journal of Chemistry, 2019, 43, 1818-1826.	2.8	11
201	Sputtered Cu-ZnO/γ-Al ₂ O ₃ Bifunctional Catalyst with Ultra-Low Cu Content Boosting Dimethyl Ether Steam Reforming and Inhibiting Side Reactions. Industrial & Engineering Chemistry Research, 2019, 58, 7085-7093.	3.7	11
202	Developing Cu-MOR@SiO2 Core–Shell Catalyst Microcapsules for Two-Stage Ethanol Direct Synthesis from DME and Syngas. Industrial & Engineering Chemistry Research, 2020, 59, 3293-3300.	3.7	11
203	More efficient ethanol synthesis from dimethyl ether and syngas over the combined nano-sized ZSM-35 zeolite with CuZnAl catalyst. Catalysis Today, 2021, 369, 88-94.	4.4	11
204	Hydrothermal Cracking of Residual Oil Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 2000, 43, 25-36.	0.1	10
205	Hybrid Catalyst for Direct Synthesis of Isoparaffin through Modified Fischer-Tropsch Synthesis Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 2001, 44, 338-339.	0.1	10
206	Chemical Effect and Spatial Effect of New Bimodal Catalysts for Fischer-Tropsch Synthesis Journal of Chemical Engineering of Japan, 2003, 36, 874-880.	0.6	10
207	Spectroscopic and Kinetic Analysis of a New Low-Temperature Methanol Synthesis Reaction. Catalysis Letters, 2006, 106, 153-159.	2.6	10
208	The effects of the Mo–Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature. Catalysis Science and Technology, 2016, 6, 6109-6117.	4.1	10
209	Enhanced Hydrogen Production from Steam Reforming of Vegetable Oil over Bimodal ZrO ₂ â€ s iO ₂ Supported Ni Catalyst. ChemistrySelect, 2017, 2, 527-532.	1.5	10
210	New Method for Ethanol Synthesis from Dimethyl Ether and Syngas <i>via</i> Two-stage Reaction. Journal of the Japan Petroleum Institute, 2009, 52, 357-358.	0.6	9
211	Influence of Zirconia Phase on the Performance of Ni/ZrO ₂ for Carbon Dioxide Reforming of Methane. ACS Symposium Series, 2015, , 135-153.	0.5	9
212	Recent advances in multifunctional capsule catalysts in heterogeneous catalysis. Chinese Journal of Chemical Physics, 2018, 31, 393-403.	1.3	9
213	Effect of Preparation Method on ZrO2-Based Catalysts Performance for Isobutanol Synthesis from Syngas. Catalysts, 2019, 9, 752.	3.5	9
214	Hydrogenation of CO2 to LPG over CuZnZr/MeSAPO-34 catalysts. New Journal of Chemistry, 2020, 44, 9328-9336.	2.8	9
215	Influence of Carbon Content in Ni-Doped Mo2C Catalysts on CO Hydrogenation to Mixed Alcohol. Catalysts, 2021, 11, 230.	3.5	9
216	Effects of calcination temperatures on the structure–activity relationship of Ni–La/Al ₂ O ₃ catalysts for syngas methanation. RSC Advances, 2020, 10, 4166-4174.	3.6	9

#	Article	IF	CITATIONS
217	Selective direct conversion of aqueous ethanol into butadiene <i>via</i> rational design of multifunctional catalysts. Catalysis Science and Technology, 2022, 12, 2210-2222.	4.1	9
218	Effect of modifiers on the performance of Cu-ZnO-based catalysts for low-temperature methanol synthesis. Journal of Fuel Chemistry and Technology, 2014, 42, 704-709.	2.0	8
219	Design of a zeolite capsule catalyst by controlling the support size for the direct synthesis of isoparaffin. Research on Chemical Intermediates, 2008, 34, 771-779.	2.7	7
220	Functionalized Natural Carbon‣upported Nanoparticles as Excellent Catalysts for Hydrocarbon Production. Chemistry - an Asian Journal, 2017, 12, 366-371.	3.3	7
221	Designing a Mesoporous Zeolite Catalyst for Products Optimizing in n-Decane Hydrocraking. Catalysts, 2019, 9, 766.	3.5	7
222	Solvent-free anchoring nano-sized zeolite on layered double hydroxide for highly selective transformation of syngas to gasoline-range hydrocarbons. Fuel, 2019, 253, 249-256.	6.4	7
223	Enhanced α-olefins selectivity by promoted CO adsorption on ZrO2@FeCu catalyst. Catalysis Today, 2021, 375, 290-297.	4.4	7
224	One-Step Preparation of Bimodal Fe–Mn–K/SiO2 Catalyst and its Catalytic Performance of Slurry Phase Fischer–Tropsch Synthesis. Catalysis Letters, 2010, 139, 7-16.	2.6	6
225	Effect of supercritical fluid of CO2 drying during Cu/ZnO catalyst preparation on methanol synthesis from syngas at low temperature. Research on Chemical Intermediates, 2011, 37, 397-403.	2.7	6
226	A Study on the Effect of pH Value of Impregnation Solution in Nickel Catalyst Preparation for Methane Dry Reforming Reaction. ChemistrySelect, 2019, 4, 8953-8959.	1.5	6
227	NaBH ₄ <i>Inâ€situ</i> Reduced Cobalt Catalyst Supported on Zeolite A for 1â€Hexene Hydroformylation. ChemistrySelect, 2019, 4, 10447-10451.	1.5	6
228	Catalytic Oligomerization of Isobutyl Alcohol to Hydrocarbon Liquid Fuels over Acidic Zeolite Catalysts. ChemistrySelect, 2020, 5, 528-532.	1.5	6
229	Bimodal Porous Silica Prepared by Pore-filling of Silica Sol. Journal of the Japan Petroleum Institute, 2003, 46, 335-338.	0.6	5
230	Formic acid-assisted synthesis of highly efficient Cu/ZnO catalysts: effect of HCOOH/Cu molar ratios. Catalysis Science and Technology, 2016, 6, 4777-4785.	4.1	5
231	Facile Synthesis of Protonâ€Type ZSMâ€5 by Using Quasiâ€Solidâ€Phase (QSP) Method. Chemistry - A European Journal, 2020, 26, 8532-8535.	3.3	5
232	Role of Ga ³⁺ promoter in the direct synthesis of iso-butanol <i>via</i> syngas over a K–ZnO/ZnCr ₂ O ₄ catalyst. Catalysis Science and Technology, 2021, 11, 1077-1088.	4.1	5
233	From Single Metal to Bimetallic Sites: Enhanced Higher Hydrocarbons Yield of CO ₂ Hydrogenation over Bimetallic Catalysts. ChemistrySelect, 2021, 6, 5241-5247.	1.5	5
234	Catalyst Development for Hydrothermal Cracking of Heavy Oil. Effects of Support and Potassium Salt Additive Journal of the Japan Petroleum Institute, 2002, 45, 77-83.	0.6	5

#	Article	IF	CITATIONS
235	Metal 3D Printed Nickelâ€Based Selfâ€Catalytic Reactor for COx Methanation. ChemCatChem, 2022, 14, .	3.7	5
236	Effect of Addition of K to Ni/SiO2 and Ni/Al2O3 Catalysts on Hydrothermal Cracking of Bitumen Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 2000, 43, 357-360.	0.1	4
237	Initiation Effect of Local Heating in Hydro-Thermal Cracking of Resids. Energy & Fuels, 2000, 14, 1331-1332.	5.1	4
238	Direct synthesis of iso-paraffin fuel from palm oil on mixed heterogeneous acid and base catalysts. Monatshefte Für Chemie, 2017, 148, 1235-1243.	1.8	4
239	Fabrication of a CuZn-based catalyst using a polyethylene glycol surfactant and supercritical drying. Catalysis Science and Technology, 2020, 10, 8410-8420.	4.1	4
240	Heteroatom Promoted Ni/Al ₂ O ₃ Catalysts for Highly Efficient Hydrogenation of 1,4â€Butynediol to 1,4â€Butenediol. ChemistrySelect, 2020, 5, 10072-10080.	1.5	4
241	Effects of a forming process on the properties and structure of RANEY®-Ni catalysts for the hydrogenation of 1,4-butenediol. RSC Advances, 2020, 10, 5516-5524.	3.6	4
242	Direct Production of Hydrocarbons by Fischer-Tropsch Synthesis Using Newly Designed Catalysts. Journal of the Japan Petroleum Institute, 2020, 63, 239-247.	0.6	4
243	A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels. , 2022, 1, 230-248.		4
244	A Novel, Low Temperature Synthesis Method of Dimethyl Ether Over Cu–Zn Catalyst Based on Self-Catalysis Effect of Methanol. Topics in Catalysis, 2009, 52, 1079-1084.	2.8	3
245	Nitrate Combustion Methods to Prepare Highly Active Cu/ZnO Catalysts for Low-Temperature Methanol Synthesis: Comparative Behaviors of Citric Acid in Air or Argon Atmosphere. Bulletin of the Chemical Society of Japan, 2013, 86, 1202-1209.	3.2	3
246	LPG Direct Synthesis from Syngas over a Cu/ZnO/ZrO 2 /Al 2 O 3 @Hâ€Ŷ Zeolite Capsule Catalyst Prepared by a Facile Physical Method. ChemistrySelect, 2020, 5, 1932-1937.	1.5	3
247	Propane Aromatization Tuned by Tailoring Cr Modified Ga/ZSMâ€5 Catalysts. ChemCatChem, 2021, 13, 3601-3610.	3.7	3
248	Resistance against Carbon Deposition via Controlling Spatial Distance of Catalytic Components in Methane Dehydroaromatization. Catalysts, 2021, 11, 148.	3.5	3
249	Silicalite-1 encapsulated rhodium nanoparticles for hydroformylation of 1-hexene. Catalysis Today, 2023, 410, 150-156.	4.4	3
250	Polyethylene Glycol Addition Effect on Preparing Cu–Zn–O Catalysts for Low-temperature Methanol Synthesis. Journal of the Japan Petroleum Institute, 2011, 54, 344-345.	0.6	2
251	Expanding Small Pore Size of the Bimodal Catalyst with Surfactant and Its Application in Slurry-phase Fischer-Tropsch Synthesis. ChemistrySelect, 2016, 1, 778-783.	1.5	2
252	Effect of Different Chelating Agents on the Physicochemical Properties of Cu/ZnO Catalysts for Low-temperature Methanol Synthesis from Syngas Containing CO ₂ . Journal of the Japan Petroleum Institute, 2021, 64, 245-255.	0.6	2

#	Article	IF	CITATIONS
253	Probing the promotional roles of lanthanum in physicochemical properties and performance of ZnZr/Si-beta catalyst for direct conversion of aqueous ethanol to butadiene. Catalysis Today, 2022, , .	4.4	2
254	TiO ₂ Promoted Co/SiO ₂ Catalysts for Fischer-Tropsch Synthesis. Journal of the Japan Petroleum Institute, 2006, 49, 45-46.	0.6	1
255	Influence of Co Precursor and Pt Additive on Catalytic Performance of Highly Active Co/SiO ₂ -based Fischer-Tropsch Synthesis Catalysts. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 250-254.	0.2	1
256	Direct Synthesis of Liquefied Petroleum Gas from Carbon Dioxide Using a Copper/Zinc Oxide/Zirconia/Alumina and HY Zeolite Hybrid Catalyst. ChemistrySelect, 2021, 6, 7103-7110.	1.5	1
257	Pore Structure Model of Bimodal Catalyst Supports. Journal of the Japan Petroleum Institute, 2014, 57, 230-234.	0.6	1
258	Ambient-Pressure Synthesis of Highly Crystallized Zeolite NaA. Industrial & Engineering Chemistry Research, 2022, 61, 1725-1732.	3.7	1
259	Novel hybrid alcohol-dominated reaction network for highly selective conversion of CO2 into ethene. Chem Catalysis, 2022, 2, 933-935.	6.1	1
260	Study on new method and mechanism of low-temperature methanol synthesis. , 2011, , .		0
261	Oxygenates Synthesis by Hydroformylation of 1-hexene over Co Nanoparticle Catalyst. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2017, 96, 186-189.	0.2	0
262	Powerful and New Chemical Synthesis Reactions from CO2 and C1 Chemistry Innovated by Tailor-Made Core–Shell Catalysts. Nanostructure Science and Technology, 2021, , 105-120.	0.1	0
263	Enhancing Effect of Local Heating by an Inside Filament on Hydrothermal Cracking of Hydrocarbon Catalyzed by Ni/Al2O3 – Sekiyy Cakkaishi (Journal of the Japan Petroleum Institute) - 2000, 43, 414-415	0.1	0