Mohammed Asmael

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8547190/publications.pdf

Version: 2024-02-01

623734 454955 1,042 53 14 30 citations g-index h-index papers 55 55 55 541 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Minimization of surface roughness in 5-axis milling of turbine blades. Mechanics Based Design of Structures and Machines, 2023, 51, 5213-5230.	4.7	13
2	Effect of Carbon Nanotubes and Porosity on Vibrational Behavior of Nanocomposite Structures: A Review. Archives of Computational Methods in Engineering, 2022, 29, 2621-2657.	10.2	8
3	State-of-the-art review of fabrication, application, and mechanical properties of functionally graded porous nanocomposite materials. Nanotechnology Reviews, 2022, 11, 321-371.	5 . 8	55
4	Recent developments in tensile properties of friction welding of carbon fiber-reinforced composite: A review. Nanotechnology Reviews, 2022, 11, 1408-1436.	5.8	6
5	Prediction of properties of friction stir spot welded joints of AA7075-T651/Ti-6Al-4V alloy using machine learning algorithms. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	12
6	An Experimental and Metamodeling Approach to Tensile Properties of Natural Fibers Composites. Journal of Polymers and the Environment, 2022, 30, 4377-4393.	5.0	6
7	Outcome of mix Ce and Er addition on solidification microstructure of the LM25 (Al-7Si-alloy). Materials Today: Proceedings, 2021, 39, 935-940.	1.8	1
8	Experimental and simulation study of liquid coolant battery thermal management system for electric vehicles: A review. International Journal of Energy Research, 2021, 45, 6495-6517.	4.5	76
9	The experimental study of CFRP interlayer of dissimilar joint AA7075-T651/Ti-6Al-4V alloys by friction stir spot welding on mechanical and microstructural properties. Nanotechnology Reviews, 2021, 10, 401-413.	5.8	16
10	Friction stir spot welding of AA5052 with additional carbon fiber-reinforced polymer composite interlayer. Nanotechnology Reviews, 2021, 10, 201-209.	5.8	11
11	Ultrasonic machining of carbon fiber–reinforced plastic composites: a review. International Journal of Advanced Manufacturing Technology, 2021, 113, 3079-3120.	3.0	31
12	Developments on Electron Beam Melting (EBM) of Ti–6Al–4V: A Review. Transactions of the Indian Institute of Metals, 2021, 74, 783-790.	1.5	21
13	Modeling and simulation of the elastic properties of natural <scp>fiberâ€reinforced</scp> thermosets. Polymer Composites, 2021, 42, 3508-3517.	4.6	25
14	Virtual Minimization of Residual Stress and Deflection Error in the Five-Axis Milling of Turbine Blades. Strojniski Vestnik/Journal of Mechanical Engineering, 2021, 67, 235-244.	1.1	18
15	Solidification and microstructure characterizations of eutectic aluminumâ€silicon casting alloy with the addition of tin. Materialwissenschaft Und Werkstofftechnik, 2021, 52, 871-878.	0.9	2
16	Classification of research and applications of the computer aided process planning in manufacturing systems. Independent Journal of Management & Production, 2021, 12, 1250-1281.	0.4	16
17	Effect of Rotational Speed, and Dwell Time on the Mechanical Properties and Microstructure of Dissimilar AA5754 and AA7075-T651 Aluminum Sheet Alloys by Friction Stir Spot Welding. Medziagotyra, 2021, 27, 308-312.	0.2	4
18	Calcium carbonate nanoparticles effects on cement plast properties. Microsystem Technologies, 2021, 27, 3059-3076.	2.0	14

#	Article	IF	CITATIONS
19	Recent Developments in Luffa Natural Fiber Composites: Review. Sustainability, 2020, 12, 7683.	3.2	78
20	Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability, 2020, 12, 8211.	3.2	243
21	Effects of rotation speed and dwell time on the mechanical properties and microstructure of dissimilar aluminumâ€titanium alloys by friction stir spot welding (FSSW). Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1002-1008.	0.9	13
22	Recent Developments in Palm Fibers Composites: A Review. Journal of Polymers and the Environment, 2020, 28, 3029-3054.	5.0	37
23	Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin-Walled Structures, 2020, 157, 107139.	5.3	44
24	Finite element analysis of natural fibers composites: A review. Nanotechnology Reviews, 2020, 9, 853-875.	5.8	84
25	Smart Manufacturing for Industry 4.0 using Radio Frequency Identification (RFID) Technology. Jurnal Kejuruteraan, 2020, 32, 31-38.	0.3	8
26	Applications of Machine Learning to Friction Stir Welding Process Optimization. Jurnal Kejuruteraan, 2020, 32, 171-186.	0.3	23
27	Mechanical Behavior of Materials in Metal Cutting Operations : A Review. Journal of New Technology and Materials, 2020, 10, 79-89.	0.4	5
28	The Effect of Process Parameters in Friction Stir Processing of Cast Hypereutectic Al–Si Alloy. Advanced Science Letters, 2018, 24, 3993-3998.	0.2	2
29	Developments in Plasma Arc Cutting (PAC) of Steel Alloys: A Review. Jurnal Kejuruteraan, 2018, 30, 7-16.	0.3	5
30	Reduction in secondary dendrite arm spacing in cast eutectic Al–Si piston alloys by cerium addition. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 91-101.	4.9	26
31	Effect of praseodymium and erbium additions on solidification characteristics, microstructure and mechanical properties of as-cast ZRE1 magnesium alloy. Materialwissenschaft Und Werkstofftechnik, 2017, 48, 218-225.	0.9	2
32	Surface modification of hypereutectic Al-Si alloy via friction stir process. AIP Conference Proceedings, 2017, , .	0.4	2
33	Effect of rare earth addition on solidification characteristics and microstructure of ZRE1 magnesium cast alloy. Advances in Materials and Processing Technologies, 2017, 3, 418-427.	1.4	3
34	Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents. International Journal of Minerals, Metallurgy and Materials, 2017, 24, 1306-1320.	4.9	6
35	Development of a TiC/Cr23C6 Composite Coating on a 304 Stainless Steel Substrate through a Tungsten Inert Gas Process. Coatings, 2017, 7, 80.	2.6	11
36	Effects of Rare Earth Neodymium on Microstructure and Mechanical Properties of Mg-Ce-Zn-Zr Alloy. International Journal of Materials Science and Engineering, 2017, 5, 133-139.	0.1	0

3

#	Article	IF	CITATIONS
37	Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy. Journal of Materials Engineering and Performance, 2016, 25, 2799-2813.	2.5	35
38	Influence of Cerium on Microstructure and Solidification of Eutectic Al–Si Piston Alloy. Materials and Manufacturing Processes, 2016, 31, 1948-1957.	4.7	22
39	EFFECT OF AGING TIME ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AA6061 FRICTION STIR WELDING JOINTS. International Journal of Automotive and Mechanical Engineering, 2015, 11, 2364-2372.	0.9	6
40	Effect of High Cerium and Lanthanum on Impact Toughness of Al-11Si-Cu Eutectic Cast Alloy. Applied Mechanics and Materials, 2014, 660, 195-198.	0.2	2
41	Effect of Pouring Temperature and Melt Treatment on Microstructure of Lost Foam Casting of AL-Si LM6 Alloy. Advanced Materials Research, 0, 264-265, 295-300.	0.3	15
42	Effect of Mish Metal Cerium Addition on Fluidity of Aluminum Eutectic Silica Alloys - LM6. Applied Mechanics and Materials, 0, 465-466, 839-842.	0.2	1
43	The Influence of Metallic Addition on Fluidity of Aluminum (LM6) Alloy. Applied Mechanics and Materials, 0, 465-466, 954-957.	0.2	0
44	Effect of Elements Cerium and Lanthanum on Eutectic Solidification of Al-Si-Cu near Eutectic Cast Alloy. Advanced Materials Research, 0, 845, 118-122.	0.3	4
45	The Effect of Metallic Addition on Mechanical Property of Aluminum (LM6) Alloy. Applied Mechanics and Materials, 0, 465-466, 958-961.	0.2	2
46	Effect of Pouring Temperature on Microstructure Properties of Al-Si LM6 Alloy Sand Casting. Applied Mechanics and Materials, 0, 315, 856-860.	0.2	11
47	Effect of Cerium Addition and Cooling Rate on Microstructure of ADC12 Eutectic Cast Alloy. Advanced Materials Research, 0, 1119, 486-489.	0.3	1
48	Effect of Lanthanum Addition on Fluidity of Complex Al-11Si-Cu-Mg Cast Alloy. Advanced Materials Research, 0, 1119, 490-494.	0.3	0
49	Effect of Lanthanum Addition on Microstructure and Hardness as Cooling Rate Function of ADC12 Eutectic Cast Alloy. Advanced Materials Research, 0, 1119, 495-499.	0.3	0
50	Effect of Rare Earth Metals on Diffusion and Porosity Deformation of Al-11Si-2Cu Cast Alloy. Advanced Materials Research, 0, 1133, 305-309.	0.3	0
51	Effect of Yttrium Addition on Microstructure and Hardness of Cast EV31A Magnesium Alloy. Key Engineering Materials, 0, 740, 81-85.	0.4	1
52	The Influence of Holmium on the Microstructure and Hardness of Mg-Nd-Gd-Zn-Zr Alloys. Key Engineering Materials, 0, 740, 48-53.	0.4	1
53	Recent Development in Friction Stir Welding Process: A Review. SAE International Journal of Materials and Manufacturing, 0, 14 , .	0.3	11